Publication:
Bloch-like oscillations in a one-dimensional lattice with long-range correlated disorder

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2003-11-07
Authors
Moura, F. A. B. F., de
Lyra, M. L.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study the dynamics of an electron subjected to a uniform electric field within a tight-binding model with long-range-correlated diagonal disorder. The random distribution of site energies is assumed to have a power spectrum S(k)similar to1/k(alpha) with alpha>0. de Moura and Lyra [Phys. Rev. Lett. 81, 3735 (1998)10.1103/Phys. Rev. Lett.81.3735] predicted that this model supports a phase of delocalized states at the band center, separated from localized states by two mobility edges, provided alpha>2. We find clear signatures of Bloch-like oscillations of an initial Gaussian wave packet between the two mobility edges and determine the bandwidth of extended states, in perfect agreement with the zero-field prediction.
Description
© 2003 The American Physical Society. V. A. M. acknowledges support from NATO. Work at Madrid was supported by DGI-MCyT (MAT2000-0734). Work at Brazil was supported by CNPq and CAPES (Brazilian research agencies) and FAPEAL (Alagoas State agency).
Unesco subjects
Keywords
Citation
[1] E. Abrahams, P.W. Anderson, D. C. Licciardello, and T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979). [2] J. C. Flores, J. Phys. Condens. Matter 1, 8471 (1989). [3] D. H. Dunlap, H.-L. Wu, and P.W. Phillips, Phys. Rev. Lett. 65, 88 (1990). [4] V. Bellani, E. Diez, R. Hey, L. Toni, L. Tarricone, G. B. Parravicini, F. Dom´ınguez-Adame, and R. Gómez Alcalá, Phys. Rev. Lett. 82, 2159 (1999). [5] F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81, 3735 (1998). [6] F. M. Izrailev and A. A. Krokhin, Phys. Rev. Lett. 82, 4062 (1999). [7] F. A. B. F. de Moura and M. L. Lyra, Physica (Amsterdam) 266A, 465 (1999). [8] U. Kuhl, F. M. Izrailev, A. A. Krokhin, and H.-J. Stöckmann, Appl. Phys. Lett. 77, 633 (2000). [9] F. Bloch, Z. Phys. 52, 555 (1928). [10] D. H. Dunlap and V. M. Kenkre, Phys. Rev. B 34, 3625 (1986). [11] H. N. Nazareno and P. E. de Brito, Phys. Rev. B 60, 4629 (1999). [12] C.-K. Peng, S.V. Buldyrev, A. L. Goldberger, S. Havlin, F. Sciortino, M. Simons, and H. E. Stanley, Nature (London) 356, 168 (1992). [13] P. Carpena, P. Bernaola-Galván, P. Ch. Ivanov, and H. E. Stanley, Nature (London) 418, 955 (2002). [14] A.-L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, England, 1995). [15] A. Krokhin, F. Izrailev, U. Kuhl, H.-J. Stöckmann, and S. E. Ulloa, Physica (Amsterdam) 13E, 695 (2002). [16] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W.T. Wetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, New York, 1986), pp. 656–663. [17] N.W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishers, New York, 1976), p. 213. [18] L. Arrachea, Phys. Rev. B 66, 045315 (2002). [19] V. G. Lyssenko, G. Valusis, F. Loser, T. Hasche, K. Leo, M. M. Dignam, and K. Kohler, Phys. Rev. Lett. 79, 301 (1997)
Collections