Universidad Complutense de Madrid
E-Prints Complutense

Ferroelectric substrate effects on the magnetism, magnetotransport, and electroresistance of La0.7Ca0.3MnO3 thin films on BaTiO3

Impacto

Downloads

Downloads per month over past year

León Yebra, Carlos and Biskup Zaja, Nevenko and Santamaría Sánchez-Barriga, Jacobo and Alberca Carretero, Aurora and Andrés, Amado de and García Hernández, M. and Munuera, C. and Mompean, F.J. and Nemes, Norbert Marcel (2012) Ferroelectric substrate effects on the magnetism, magnetotransport, and electroresistance of La0.7Ca0.3MnO3 thin films on BaTiO3. Physical Review B, 86 (14). ISSN 1098-0121

[img]
Preview
PDF
1MB

Official URL: http://dx.doi.org/10.1103/PhysRevB.86.144416


URLURL Type
http://journals.aps.org/Publisher


Abstract

La0.7Ca0.3MnO3 optimally doped epitaxial films were grown on ferroelectric BaTiO3 substrates. Electronic transport (magnetoresistance and electroresistance) and magnetic properties showed important anomalies in the temperature interval between 60 and 150 K, below the metal-insulator transition. Scanning probe microscopy revealed changes in BaTiO3 surface morphology at those temperatures. La0.7Ca0.3MnO3 thickness is a critical factor: 120-angstrom -thick films showed large anomalies sensitive to electric poling of the BaTiO3, whereas the behavior of 150-angstrom -thick films is closer to that of the reference La0.7Ca0.3MnO3 samples grown on SrTiO3. We propose that, through inhomogenous strain and electric polarization effects, the ferroelectric substrate induces an inhomogenous spin distribution in the magnetic layer. This would imply the coexistence of in-plane and out-of-plane ferromagnetic patches in La0.7Ca0.3MnO3, possibly interspersed with antiferromagnetic regions, as it has recently been theoretically predicted. Substrate poling effects are investigated, and a magnetoelectric coupling is demonstrated.


Item Type:Article
Additional Information:

© American Physical Society. CM and NMN acknowledge Spanish MINECO for Juan de la Cierva and Ramón y Cajal fellowships. This work was supported by the Spanish MINECO through Grant Nos. MAT2011-27470-C02-01 and MAT2011-27470-C02-02.

Uncontrolled Keywords:Barium-Titanate, Strain, Phase, Heterostructures, Magnetometry, Manganites.
Subjects:Sciences > Physics > Electricity
Sciences > Physics > Electronics
ID Code:27511
Deposited On:02 Dec 2014 11:21
Last Modified:10 Dec 2018 14:58

Origin of downloads

Repository Staff Only: item control page