Publication:
Linear optical properties of one-dimensional Frenkel exciton systems with intersite energy correlations

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1999-11-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We analyze the effects of intersite energy correlations on the linear optical properties of one-dimensional disordered Frenkel exciton systems. The absorption linewidth and the factor of radiative rate enhancement are studied as a function of the correlation length of the disorder. Thr absorption line width monotonously approaches the seeding degree of disorder on increasing the correlation length. On the contrary, the factor of radiative rate enhancement shows a nonmonotonous trend, indicating a complicated scenario of the exciton localization in correlated systems. The concept of coherently bound molecules is exploited to explain the numerical results, showing good agreement with theory. Some recent experiments are discussed in the light of the present theory. [S0163-1829(99)07343-9].
Description
© 1999 The American Physical Society. This work was supported by CAM under Project No. 07N/0034/1998. V. A. M. thanks UCM for support under project ‘‘ Sabáticos Complutense.’’
Unesco subjects
Keywords
Citation
1. E.E. Jelley, Nature (London) 38, 1009 (1936). 2. G. Scheibe, Angew. Chem. 50, 212 (1937). 3. J. Frenkel, Phys. Rev. 37, 1276 (1931). 4. A. S. Davydov, Theory of Molecular Excitons (Plenum Press, New York, 1971). 5. E.G. McRae and M. Kasha, J. Chem. Phys. 28, 721 (1958). 6. S. De Boer and D.A. Wiersma, Chem. Phys. Lett. 165, 45 (1990). 7. E.W. Knapp, Chem. Phys. 85, 73 (1984). 8. N.F. Mott and W.D. Twose, Adv. Phys. 10, 107 (1961). 9. H. Fidder, J. Knoester, and D.A. Wiersma, J. Chem. Phys. 95, 7880 (1991). 10. J. Knoester, J. Chem. Phys. 99, 8466 (1993); J. Lumin. 58, 107 (1994). 11. F. Domínguez-Adame, Phys. Rev. B 51, 12 801 (1995). 12. J. Knoester and F. C. Spano, J Aggregates, edited by T. Kobayashi (World Scientific, Singapore, 1996), p. 111. 13. F. Domínguez-Adame, V. A. Malyshev, and A. Rodríguez, Chem. Phys. 244, 351 (1999). 14. F. Domínguez-Adame and V. A. Malyshev, J. Lumin. (to be published) 15. J.R. Durrant, J. Knoester, and D.A. Wiersma, Chem. Phys. Lett. 222, 450 (1994). 16. J. Moll, S. Daehne, J.R. Durrant, and D.A. Wiersma, J. Chem. Phys. 102, 6362 (1995). 17. S. Russ, S. Havlin, and I. Webman, Philos. Mag. 77, 1449 (1998). 18. M. Schreiber and Y. Toyozawa, J. Phys. Soc. Jpn. 51, 1528 (1982); 51, 1537 (1982); 51, 1544 (1982). 19. V.A. Malyshev, Opt. Spektrosk. 71, 873 (1991) [Opt. Spektrosk. 71, 505 (1991)]; J. Lumin. 55, 225 (1993). 20. V. Malyshev and P. Moreno, Phys. Rev. B 51, 14 587 (1995). 21. M. Shimizu, S. Suto, T. Goto, A. Watanabe, and M. Matsuda, Phys. Rev. B 58, 5032 (1998). 22. J. Köhler, A.M. Jayannavar, and P. Reinecker, Z. Phys. B 75, 451 (1989). 23. A. Tilgner, H.P. Trommsdorff, J.M. Zeigler, and R.M. Hochstrasser, J. Chem. Phys. 96, 781 (1992). 24. A. Boukahil and D.L. Huber, J. Lumin. 45, 13 (1990). 25. J. Klafter and J. Jortner, J. Chem. Phys. 68, 1513 (1978).
Collections