Publication:
Decoherence as a signature of an excited-state quantum phase transition

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-12
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We analyze the decoherence induced on a single qubit by the interaction with a two-level boson system with critical internal dynamics. We explore how the decoherence process is affected by the presence of quantum phase transitions in the environment. We conclude that the dynamics of the qubit changes dramatically when the environment passes through a continuous excited state quantum phase transition. If the system-environment coupling energy equals the energy at which the environment has a critical behavior, the decoherence induced on the qubit is maximal and the fidelity tends to zero with finite size scaling obeying a power law.
Description
© 2008 The American Physical Society. This work has been partially supported by the Spanish Ministerio de Educacion y Ciencia and by the European Regional Development Fund (FEDER) under Projects No. FIS2005-01105, No. FIS2006-12783-C03-01, No. FPA2006-13807-C02-02, and No. FPA2007-63074, by Comunidad de Madrid and CSIC under Project No. 200650M012, and by Junta de Analucia under Projects No. FQM160, No. FQM318, No. P05-FQM437, and No. P07-FQM-02962. A. R. was supported by the Spanish program "Juan de la Cierva," and P. P- F. by a grant from the Plan Propio of the University of Sevilla.
UCM subjects
Unesco subjects
Keywords
Citation
[1] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003). [2] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000). [3] H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Phys. Rev. Lett. 96, 140604 (2006). [4] F. M. Cucchietti, S. Fernández Vidal, and J. P. Paz, Phys. Rev. A 75, 032337 (2007). [5] C. Cormick and J. P. Paz, Phys. Rev. A 77, 022317 (2008). [6] D. Rossini, T. Calarco, V. Giovannetti, S. Montangero, and R. Fazio, Phys. Rev. A 75, 032333 (2007). [7] P. Cejnar, S. Heinze, and M. Macek, Phys. Rev. Lett. 99, 100601 (2007). [8] P. Cejnar and J. Jolie, Prog. Part. Nucl. Phys. 62, 210 (2009). [9] W. D. Heiss, F. G. Scholtz, and H. B. Geyer, J. Phys. A 38, 1843 (2005); F. Leyvraz and W. D. Heiss, Phys. Rev. Lett. 95, 050402 (2005); W. D. Heiss, J. Phys. A 39, 10081 (2006). [10] S. Heinze, P. Cejnar, J. Jolie, and M. Macek, Phys. Rev. C 73, 014306 (2006); M. Macek, P. Cejnar, J. Jolie, and S. Heinze, ibid. 73, 014307 (2006); P. Cejnar, M. Macek, S. Heinze, J. Jolie, and J. Dobes, J. Phys. A 39, L515 (2006). [11] M. A. Caprio, P. Cejnar, and F. Iachello, Ann. Phys. (N.Y.) 323, 1106 (2008). [12] J. Vidal, J. M. Arias, J. Dukelsky, and J. E. García Ramos, Phys. Rev. C 73, 054305 (2006); J. M. Arias, J. Dukelsky, J. E. García Ramos, and J. Vidal, ibid. 75, 014301 (2007). [13] D. Bonatsos, E. A. McCutchan, R. F. Casten, and R. J. Casperson, Phys. Rev. Lett. 100, 142501 (2008). [14] F. Pérez Bernal and F. Iachello, Phys. Rev. A 77, 032115 (2008); F. Pérez Bernal, L. F. Santos, P. H. Vaccaro, and F. Iachello, Chem. Phys. Lett. 414, 398 (2005). [15] S. Morrison and A. S. Parkins, Phys. Rev. Lett. 100, 040403 (2008); Phys. Rev. A 77, 043810 (2008).
Collections