Publication:
Alternative representation of the linear canonical integral transform

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2005-12-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Optical Society of America
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Starting with the Iwasawa-type decomposition of a first-order optical system (or ABCD system) as a cascade of a lens, a magnifier, and an orthosymplectic system (a system that is both symplectic and orthogonal), a further decomposition of the orthosymplectic system in the form of a separable fractional Fourier transformer embedded between two spatial-coordinate rotators is proposed. The resulting decomposition of the entire first-order optical system then shows a physically attractive representation of the linear canonical integral transformation, which, in contrast to Collins integral, is valid for any ray transformation matrix.
Description
© 2005 Optical Society of America. The Spanish Ministry of Education and Science is acknowledged for financial support through a “Ramon y Cajal” grant and projects TIC 2002-01846 (T. Alieva, talieva@fis.ucm.es) and SAB2004-0018 (M. J. Bastiaans, m.j.bastiaans@tue.nl).
Keywords
Citation
1. R. K. Luneburg, Mathematical Theory of Optics (University of California Press, 1966). 2. S. A. Collins, Jr., J. Opt. Soc. Am. 60, 1168 (1970). 3. M. Moshinsky and C. Quesne, J. Math. Phys. 12, 1772 (1971). 4. R. Simon and N. Mukunda, J. Opt. Soc. Am. A 15, 2146 (1998). 5. K. B. Wolf, Geometric Optics on Phase Space (Springer, 2004). 6. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001). 7. V. Namias, J. Inst. Math. Appl. 25, 241 (1980). 8. A. C. McBride and F. H. Kerr, IMA J. Appl. Math. 39, 159 (1987).
Collections