Publication:
Correlation structure of the δ_(n) statistic for chaotic quantum systems

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2005-12
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The existence of a formal analogy between quantum energy spectra and discrete time series has been recently pointed out. When the energy level fluctuations are described by means of the δ_(n) statistic, it is found that chaotic quantum systems are characterized by 1/f noise, while regular systems are characterized by 1/f(2). In order to investigate the correlation structure of the δ_(n) statistic, we study the qth-order height-height correlation function C-q(tau), which measures the momentum of order q, i.e., the average qth power of the signal change after a time delay tau. It is shown that this function has a logarithmic behavior for the spectra of chaotic quantum systems, modeled by means of random matrix theory. On the other hand, since the power spectrum of chaotic energy spectra considered as time series exhibit 1/f noise, we investigate whether the qth-order height-height correlation function of other time series with 1/f noise exhibits the same properties. A time series of this kind can be generated as a linear combination of cosine functions with arbitrary phases. We find that the logarithmic behavior arises with great accuracy for time series generated with random phases.
Description
©2005 The American Physical Society. This work is supported in part by Spanish Government Grant Nos. BFM2003-04147-C02 and FTN2003-08337-C04-04.
UCM subjects
Unesco subjects
Keywords
Citation
[1] M. V. Berry and M. Tabor, Proc. R. Soc. London 356, 375 (1977). [2] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984). [4] H. J. Stöckmann, Quantum Chaos (Cambridge University Press, Cambridge, England, 1999). [5] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys. Rep. 299, 189 (1988). [6] A. Relaño, J. M. G. Gómez, R. A. Molina, J. Retamosa, and E. Faleiro, Phys. Rev. Lett. 89, 244102 (2002). [8] Jens Feder, Fractals (Plenum, New York, 1998). [9] G. Rangarajan and M. Ding, Phys. Rev. E 61, 4991 (2000). [10] N. P. Greis and H. S. Greenside, Phys. Rev. A 44, 2324 (1991). [11] E. Faleiro, J. M. G. Gómez, R. A. Molina, L. Muñoz, A. Relaño, and J. Retamosa, Phys. Rev. Lett. 93, 244101 (2004). [12] J. M. G. Gómez, A. Relaño, J. Retamosa, E. Faleiro, L. Salasnich, M. Vranicar, and M. Robnik, Phys. Rev. Lett. 94, 084101 (2005). [13] M. S. Santhanam and J. N. Bandyopadhyay, Phys. Rev. Lett. 95, 114101 (2005). [14] B. B. Mandelbrot, Multifractals and 1/f Noise (Springer, New York, 1999). [15] R. Badii and A. Politi, Complexity Hierarchical Structure and Scaling in Physics (Cambridge University Press, Cambridge, 1997). [16] A. L. Barabási and Thomas Vicsek, Phys. Rev. A 44, 2730 (1991). [17] B. B. Mandelbrot, Phys. Scr. 32, 257 (1985). [18] W. Feller, An Introduction to Probablity Theory and its Applications Vol. 2 (John Wiley & Sons, 1971). [19] K. Falconer, Fractal Geometry. Mathematical Foundations and Applications (John Wiley & Sons, 1990). [20] T. G. M. Kleinpenning and A. H. de Kuijper, J. Appl. Phys. 63, 43 (1988). [22] Handbook of Mathematical Functions, edited by M. Abramovitz and I. A. Stegun (Dover Publiations, Inc., New York, 1972). [23] F. N. Hooge and P. A. Bobbert, Physica B 239, 223 (1997). [24] M. C. Gutzwiller, J. Math. Phys. 8, 1979 (1967). [25] J. H. Hannay and A. M. Ozorio de Almeida, J. Phys. A 17, 3429 (1984). [26] O. Bohigas, P. Leboeuf, and M. J. Sánchez, Physica D 131, 186 (1999). [27] S. Müller, S. Heusler, P. Braun, F. Haake, and A. Altland, Phys. Rev. Lett. 93, 014103 (2004);S. Müller, S. Heusler, P. Braun, F. Haake, and A. Altland, cond-mat/0503052 (unpublished). [29] Oriol Bohigas, Rizwan U. Haq, and Akhilesh Pandey, Phys. Rev. Lett. 54, 1645 (1985). [30] P. Embrechts and M. Makoto, Self-Similar Processes (Princeton University Press, Princeton, NS, 2002). [31] D. Schertzer, S. Lovejoy, and P. Hubert, An Introduction to Stochastic Multifractal Fields, edited by A. Ern and L. Weiping, Series in Contemporary Applied Mathematics (H. E. P., Beijing, 2002) pp. 106–179.
Collections