Publication:
Excitation optical-absorption in self-similar aperiodic lattices

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1994-12-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Exciton optical absorption in self-similar aperiodic one-dimensional systems is considered, focusing our attention on Thue-Morse and Fibonacci lattices as canonical examples. The absorption line shape is evaluated by solving the microscopic equations of motion of the Frenkel-exciton problem on the lattice, in which on-site energies take on two values, according to the Thue-Morse or Fibonacci sequences. Results are compared to those obtained in random lattices with the same stoichiometry and size. We find that aperiodic order causes the occurrence of well-de6ned characteristic features in the absorption spectra, which clearly di8'er from the case of random systems, indicating a most peculiar exciton dynamics. The origin of all the absorption lines is assigned by considering the self-similar aperiodic lattices as composed of two-center blocks, within the same spirit of the renormalization group ideas.
Description
© 1994 The American Physical Society. The authors thank A. Sánchez for a critical reading of the manuscript. This work was partially supported by Universidad Complutense through Project No. PR161/93-4811.
Unesco subjects
Keywords
Citation
1. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984). 2. R. Merlin, K. Bajema, R. Clarke, F. Y. Juang, and P. K. Bhattacharya, Phys. Rev. Lett. 55, 1768 (1985). 3. R. Merlin, K. Bajema, J. Nagle, and K. Ploog, J. Phys. (Paris) Colloq. 48, C5-503 (1987). 4. F. Axel and H. Tarauchi, Phys. Rev. Lett. BB, 2223 (1991). 5. J. Bellissard, A. Bovier, and J. M. Ghez, Rev. Math. Phys. 4, 1 (1992). 6. M. Severin and R. Riklund, Phys. Rev. B$9, 10 362 (1989). 7. G. Y. Oh, C. S. Ryu, and M. H. Lee, J. Phys. Condens. Matter 4, 8187 (1992). 8. M. Kohmoto and J. R. Banavar, Phys. Rev. B 34, 563 (1986). 9. J. X. Zhong, J. R. Yan, and J. Q. You, J. Phys. Condens. Matter 8, 5685 (1991). 10. E. Maciá, F. Domínguez-Adame, and A. Sánchez, Phys. Rev. B 4$, 9503 (1994). 11. C. S. Ryu, G. Y. Oh, and M. H. Lee, Phys. Rev. 8 48, 132 (1993). 12. D. Huang, G. Gumbs, and M. Kolar, Phys. Rev. 8 46, 11479 (1992). 13. C. L. Roy and A. Khan, Phys. Rev. B 49, 14979 (1994). 14. S. Tamura and F. Nori, Phys. Rev. B 40, 9770 (1989). 15. A. Bovier and J. M. Ghez (unpublished). 16. D. Tuet, M. Potemski, Y. Y. Wang, J. C. Maan, L. Tapfer, and K. Ploog, Phys. Rev. Lett. BB, 2128 (1991). 17. D. Munzar, L. Bodaek, J. Humlidek, and J. Ploog, J. Phys. Condens. Matter 6, 4107 (1994). 18. F. Domínguez-Adame, B. Méndez, A. Sánchez, and E, Maciá, Phys. Rev. B 49, 3839 (1994). 19. F. Domínguez-Adame, E. Maciá, and A. Sánchez, Phys. Rev. B 50, 6453 (1994). 20. D. L. Huber and W. Y. Ching, Phys. Rev. 8 39, 8652 (1989). 21. N. Niu and F. Nori, Phys. Rev. Lett. 57, 2057 (1986);Phys. Rev. B 42, 10329 (1990). 22. Y. Liu and W. Sritrakool, Phys. Rev. B 43, 1110 (1991). 23. E. Maciá, F. Domínguez-Adame, and A. Sánchez, Phys. Rev. E 50, 679 (1994)
Collections