Publication:
MEGARA: the future optical IFU and multi-object spectrograph for the 10.4m GTC Telescope

Research Projects
Organizational Units
Journal Issue
Abstract
In these proceedings we give a summary of the characteristics and current status of the MEGARA instrument, the future optical IFU and MOS for the 10.4-m Gran Telescopio Canarias (GTC). MEGARA is being built by a Consortium of public research institutions led by the Universidad Complutense de Madrid (UCM, Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain) and UPM (Spain). The MEGARA IFU includes two different fiber bundles, one called LCB (Large Compact Bundle) with a field-of-view of 12.5x11.3 arcsec(2) and a spaxel size of 0.62 arcsec yielding spectral resolutions between R=6,800-17,000 and another one called SCB (Small Compact Bundle) covering 8.5x6.7 arcsec(2) with hexagonally-shaped and packed 0.42-arcsec spaxels and resolutions R=8,000-20,000. The MOS component allows observing up to 100 targets in 3.5x3.5 arcmin(2). Both the IFU bundles and the set of 100 robotic positioners of the MOS will be placed at one of the GTC Folded-Cass foci while the spectrographs (one in the case of the MEGARA-Basic concept) will be placed at the Nasmyth platform. On March 2012 MEGARA passed the Preliminary Design Review and its first light is expected to take place at the end of 2015.
Description
© 2012 SPIE. Conference on Ground-Based and Airborne Telescopes (4º. 2012. Amsterdam, Netherlands). This project is partly funded by the Spanish Ministry of Science and Innovation (MICINN) under project AYA2009-10368, by the Madrid Regional Government through the AstroMadrid Project (CAM S2009/ESP- 1496) and by the Spanish MICINN under the Consolider Ingenio 2010 Program grant CSD2006-00070: First Science with the GTC. This work is being done in the framework of the Moncloa Campus of International Excellence (UCM-UPM).
Keywords
Citation
[1] Carrasco, E., et al., ”MEGARA spectrograph optics”, Proc. SPIE, this volume (2012) [2] Castillo Domínguez, E., et al., ”Cryostat and CCD for MEGARA at GTC”, Proc. SPIE, this volume (2012) [3] Maldonado, M., et a., ”MEGARA spectrograph for the GTC: mechanical and opto-mechanical design”, Proc. SPIE, this volume (2012) [4] Pérez Calpena, A., et al., ”MEGARA focal plane subsystems ”, Proc. SPIE, this volume (2012) [5] Tulloch, S., et al. 2012, ”Scientific CCD characterisation at Universidad Complutense LICA Laboratory”, Proc. SPIE, this volume (2012) [6] Gil de Paz, A., et al.,”MEGARA Webpage”, June 2012, http://guaix.fis.ucm.es/megara/ [7] Tinsley, B., ”Evolution of Galaxies and its Significance for Cosmology”, Ph.D., University of Texas in Austin (1966) [8] Kormendy, J., & Kennicutt, R. C. Jr, ”Secular Evolution and the Formation of Pseudobulges in Disk Galaxies”, Annual Review of Astronomy & Astrophysics 42, 603-683 (2004) [9] Gil de Paz, A., et al., ”The GALEX Ultraviolet Atlas of Nearby Galaxies”, Astrophysical Journa Supplement Series 173, 185-255 (2007) [10] Bakos, J., et al., ”Color Profiles of Spiral Galaxies: Clues on Outer-Disk Formation Scenarios”, Astrophysical Journal 683, L103-L106 (2008) [11] Mendes de Oliveira, C., et al., ”A Nursery of Young Objects: Intergalactic H II Regions in Stephan’s Quintet”, Astrophysical Journal 605, L17-L20 (2004) [12] Barker, M., et al., ”The Stellar Populations in the Outer Regions of M33. II. Deep ACS Imaging”, Astronomical Journal 133, 1125-1137 (2007) [13] Vlajic, M., et al., ”The Abundance Gradient in the Extremely Faint Outer Disk of NGC 300”, Astrophysical Journal 697, 361-372 (2009) [14] Bresolin, F., et al., ”The Flat Oxygen Abundance Gradient in the Extended Disk of M83”, Astrophysical Journal 695, 580 (2009) [15] Roskar, R., et al., ”Riding the SpiralWaves: Implications of Stellar Migration for the Properties of Galactic Disks”, Astrophysical Journal 684, L79-L82 (2008) [16] Muñoz Mateos, J.C., et al., ”Specific Star Formation Rate Profiles in Nearby Spiral Galaxies: Quantifying the Inside-Out Formation of Disks”, Astrophysical Journal 658, 1006-1026 (2007) [17] Sommer-Larsen, J., et al., ”Galaxy Formation: Cold Dark Matter, Feedback, and the Hubble Sequence”, Astrophysical Journal 596, 47-66 (2003) [18] Combes, F., et al., ”Decreasing diameter of a molecular ring”, Astronomy & Astrophysics 259, L27-L30 (1992) [19] Norman, C., et al., ”Bar Dissolution and Bulge Formation: an Example of Secular Dynamical Evolution in Galaxies”, Astrophysical Journal 462, 114-124 (1996) [20] Englmaier, P., & Shlosman, I., ”Dynamical Decoupling of Nested Bars: Self-gravitating Gaseous Nuclear Bars”, Astrophysical Journal, 617, L115-L118 (2004) [21] Eliche Moral, M. C., et al., ”Growth of galactic bulges by mergers. II. Low-density satellites”, Astronomy & Astrophysics 457, 91-108 (2006) [22] Eliche Moral, M. C., et al., ”A minor merger origin for stellar inner discs and rings in spiral galaxies”, Astronomy & Astrophysics 533, 104-127 (2011) [23] Sánchez, S. F., et al., ”Colors of Active Galactic Nucleus Host Galaxies at 0.5<z<1.1 from the GEMS Survey”, Astrophysical Journal 614, 586-606 (2004) [24] Robertson, B., et al., ”A Merger-driven Scenario for Cosmological Disk Galaxy Formation”, Astrophysical Journal 645, 986-1000 (2006) [25] Guhathakurta, P., et al., ”The SPLASH Survey: Spectroscopy of Newly Discovered Tidal Streams in the Outer Halo of the Andromeda Galaxy”, Bulletin of the American Astronomical Society 42, 537 (2010) [26] Sheth, K., et al., ”The Spitzer Survey of Stellar Structure in Galaxies (S4G)”, Publications of the Astronomical Sociey of the Pacific 122, 1397-1414 (2010)
Collections