Publication:
Estudio de tecnologías de oxidación de láminas delgadas de gadolinio metálico para su aplicación como aislante de puerta en MOSFETs

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2010
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Description
Máster en Física Aplicada. Facultad de Ciencias Físicas. Curso 2009-2010
Unesco subjects
Keywords
Citation
[1] S. Natarajan et. al.: “A 32 nm logic technology featuring 2nd-generation high-k+ metalgate transistors, enhanced channel strain and 0.171 Gm2 SRAM cell size in a 291 Mb array”. IEDM Tech. Dig., (2008), pp. 941-943. [2] G. D. Wilk, R. M. Wallace y J. M. Anthony: “High-k gate dielectrics: Currents status and materials properties”. J. Appl. Phys., 89, (2001), pp. 5243-5275. [3] S. A. Campbell: The Science and Engineering of Microelectronic Fabrication. Oxford University Press, 2001. [4] J. Roberson: “High dielectric constant gate oxides for metal oxide Si transistors”. Rep. Prog. Phys., 69, (2006), pp. 327-396. [5] C. Auth, M. Buehler, A. Cappellani, C. Choi, G. Ding, W. Han, S. Joshi, B. McIntyre, M. Prince, P. Ranade, J. Sandford y C. Thomas: “45nm High-k+Metal Gate Strain-Enhanced Transistors”. Intel Technology Journal, 12, Issue 02, (2008). [6] J. A. Kittl, K. Opsoner, M. Popovici, N. Menou, B. Kaczer, X. P. Wang et. al.: “High-k dielectrics for future generation memory devices”. Mic. Eng., 86, (2009), pp. 1789-1795. [7] D. G. Schlom y J. H. Haeni: “A thermodynamic approach to selecting alternative gate dielectrics”. MRS Bull, (Marzo 2002), pp. 198-208. [8] J. Pu, S. J. Kim, Y. S. Kim y B. J. Cho: “Evaluation of gadolinium oxide as a blocking layer of charge-trap flash memory cell”. Electrochem. and Solid-State Lett., 11, (2008), pp. H252-254. [9] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts y A. M. Sergent: “Epitaxial cubic gadolinium oxide as a dielectric for gallium arsenide passivation”. Science, 283, (Marzo 1999), pp. 1897-1900. [10] M. A. Pampillón Arce: Proyecto Final de la Ingeniería Electrónica del Departamento de Física Aplicada III: Electricidad y Electrónica de la Universidad Complutense de Madrid, 2009. [11] S. Wolf y R. N. Tauber: Silicon Processing for the VLSI Era. Volumen 1: Process Technology. Lattice Press, 1986. [12] P. C. Feijoo Guerro: Trabajo de investigación del Máster en Física Aplicada del Departamento de Física Aplicada III: Electricidad y Electrónica de la Universidad Complutense de Madrid, 2008. [13] D. Camacho: Proyecto Final de la Ingeniería Electrónica del Departamento de Física Aplicada III: Electricidad y Electrónica de la Universidad Complutense de Madrid, 2004. [14] R. W. B. Pearse y A. G. Gaydon: The Identification of Molecular Spectra. Chapman and Hall, 1976. [15] Y. Shoujing, W. Feng, W. Yi, Y. Zhimin, T. Hailing and D. Jun: “Phase control of magnetron sputtering deposited Gd2O3 thin films as high-k dielectrics”. J. Rare Earths, 26, (2008), pp. 371-374. [16] E. San Andrés, A. del Prado, I. Mártil, G. González-Díaz, D. Bravo, F. López et. at.: “Bonding configuration and density of defects of SiOxHy thin films deposited by electron cyclotron resonance plasma method”. J. Appl. Phys., 94, (2003), pp 7462-7469. [17] A. Hardy, C. Adelmann, S. V. Elshocht, H. V. Rul, M. K. V. Bael, S. De Gendt et. at.: “Study of interfacial reactions and phase stabilization of mixed Sc, Dy, Hf high-k oxides by attenuated total reflectance infrared spectroscopy”. Appl. Surf. Sci., 255, (2009), pp. 7812-7817. [18] E. H. Nicollian y J. R. Brews: MOS (Metal Oxide Semicondutor) Physics and Technology. John Willey & Sons, Inc., 1982. [19] Y. Hoshino, Y. Kido, K. Yamamoto, S. Hayashi y M. Niwa: “Characterization and control of the HfO2/Si(001) interfaces”. Appl. Phys. Lett., 81, (2002), pp. 2650-2652. [20] Kim et. at.: “Engineering chemically abrupt high-k metal oxide/silicon interfaces using an oxygen-gettering metal overlayer”. J. Appl. Phys., 96, (2004), pp. 3467-3472.