Publication:
Coinductive Definition of Distances between Processes: Beyond Bisimulation Distances

Research Projects
Organizational Units
Journal Issue
Abstract
Bisimulation captures in a coinductive way the quivalence between processes, or trees. Several authors have defined bisimulation distances based on the bisimulation game. However, this approach becomes too local: whenever we have in one of the compared processes a large collection of branches different from those of the other, only the farthest away is taken into account to define the distance. Alternatively, we have developed a more global approach to define these distances, based on the idea of how much we need to modify one of the compared processes to obtain the other. Our original definition only covered finite processes. Instead, now we present here a coinductive approach that extends our distance to infinite but finitary trees, without needing to consider any kind of approximation of infinite trees by their finite projections.
Description
34th IFIP WG 6.1 International Conference on Formal Techniques for Distributed Objects, Components and Systems (FORTE)
Keywords
Citation
1. Černý, P., Henzinger, T.A., Radhakrishna,A.:Quantitative simulation games. In:Manna, Z., Peled, D.A. (eds.) Time for Verification. LNCS, vol. 6200, pp.42–60.Springer,Heidelberg (2010) 2. Černý, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. In: Gastin,P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 253–268. Springer,Heidelberg (2010) 3. de Alfaro, L., Henzinger, T.A., Majumdar, R.: iscounting the future in systems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J.,Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003) 4. de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game relations and metrics.In: LICS 2007, pp. 99–108. IEEE Computer Society (2007) 5. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labeled markov systems. In: Baeten, .C.M., Mauw, S. (eds.) CONCUR 1999. LNCS,vol. 1664, pp. 258–273. Springer, Heidelberg (1999) 6. Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilistic processes: Logic, simulation and games. In: QEST 2008, pp. 264–273. IEEE Computer Society (2008) 7. Fahrenberg, U., Legay, A., Thrane, C.R.: The quantitative linear-time–branchingtime spectrum. In: FSTTCS 2011. LIPIcs, vol. 13, pp. 103–114. Schloss dagstuhl - Leibniz-Zentrum für Informatik (2011) 8. Fahrenberg, U., Thrane, C.R., Larsen, K.G.: Distances for weighted transition systems:Games and properties. In: QAPL 2011, pp. 134–147 (2011) 9. Giacalone, A., Jou, C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent systems. In: Proc. IFIP TC2 Working Conference on Programming Concepts and Methods, pp. 443–458. North-Holland (1990) 10. Henzinger, T.A., Otop, J.: From model checking to model measuring. In:D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS,vol. 8052, pp. 273–287. Springer, Heidelberg (2013) 11. Jacobs, B.: Exercises in coalgebraic specification. In: Blackhouse, R., Crole, R.L.,Gibbons, J. (eds.) Algebraic and Coalgebraic Methods in the Mathematics of Program Construction. LNCS, vol. 2297, pp. 237–280. Springer, Heidelberg (2002) 12. Jacobs, B.: Introduction to coalgebra. towards mathematics of states and observations (2012), http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf 13. Kiehn, A., Arun-Kumar, S.: Amortised bisimulations. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 320–334. Springer, Heidelberg (2005) 14. Milner, R.: Communication and concurrency. Prentice Hall (1989) 15. Nielsen, M., Clausen, C.: Bisimulation, games, and logic. In: Karhumäki, J., Rozenberg,G., Maurer, H.A. (eds.) Results and Trends in Theoretical Computer Science.LNCS, vol. 812, pp. 289–306. Springer, Heidelberg (1994) 16. Park, D.M.R.: Concurrency and automata on infinite sequences. In: Deussen, P.(ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981) 17. Romero Hernández, D., de Frutos Escrig, D.: Defining distances for all process semantics. In: Giese, H., Rosu, G. (eds.) FMOODS/ FORTE 2012. LNCS, vol. 7273,pp. 169–185. Springer, Heidelberg (2012) 18. Romero Hernández, D., de Frutos Escrig, D.: Distances between processes: A pure algebraic approach. In: Martí-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 841, pp. 265–282. Springer, Heidelberg (2013) 19. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput.Sci. 249(1), 3–80 (2000) 20. Sangiorgi, D.: Advanced topics in bisimulation and coinduction. Cambridge Tracts in Theoretical Computer Science (2011) 21. Stirling, C.: The joys of bisimulation. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 142–151. Springer, Heidelberg (1998) 22. Stirling, C.: Bisimulation, modal logic and model checking games. Logic Journal of the IGPL 7(1), 103–124 (1999) 23. Ying, M., Wirsing, M.: Approximate bisimilarity. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 309–322. Springer, Heidelberg (2000)