Publication:
Hydrogen-induced reversible spin-reorientation transition and magnetic stripe domain phase in bilayer Co on Ru(0001)

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-04-04
Authors
Santos, Benito
Gallego, Silvia
McCarty, Kevin F.
Quesada, Adrian
Alpha, N'Diaye T.
Schmid, Andreas K.
Figuera, Juan de la
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Imaging the change in the magnetization vector in real time by spin-polarized low-energy electron microscopy, we observed a hydrogen-induced, reversible spin-reorientation transition in a cobalt bilayer on Ru(0001). Initially, hydrogen sorption reduces the size of out-of-plane magnetic domains and leads to the formation of a magnetic stripe domain pattern, which can be understood as a consequence of reducing the out-of-plane magnetic anisotropy. Further hydrogen sorption induces a transition to an in-plane easy axis. Desorbing the hydrogen by heating the film to 400 K recovers the original out-of-plane magnetization. By means of ab initio calculations we determine that the origin of the transition is the local effect of the hybridization of the hydrogen orbital and the orbitals of the Co atoms bonded to the absorbed hydrogen.
Description
© 2012 American Physical Society. This research was supported by the Spanish Ministry of Science and Technology through Projects No. MAT2009-14578-C03-01, No. MAT2009-14578-C03-03, and No. MAT2010-21156-C03-02 and the Office of Basic Energy Sciences, Divisions of Materials and Engineering Sciences, US Department of Energy under Contracts No. DE- AC04-94AL85000 and No. DE-AC02-05CH11231. BS thanks the Spanish Ministry of Science and Innovation for support through an FPI fellowship and ATN thanks the Alexander von Humboldt Foundation for financial support. Part of the calculations were performed at the facilities of CESGA (Supercomputing Centre of Galicia)
Unesco subjects
Keywords
Citation
1.G. A. Somorjai and Y. Li, Introduction to Surface Chemistry and Catalysis, 2nd ed. (Wiley, New York, 2010). 2. C. R. Abeledo and P. W. Selwood, J. Chem. Phys. 37, 2709 (1962). 3. P. D. Johnson, Rep. Prog. Phys. 60, 1217 (1997). 4. C. A. F. Vaz, J. A. C. Bland, and G. Lauhoff, Rep. Prog. Phys. 71, 056501 (2008). 5. D. Sander, W. Pan, S. Ouazi, J. Kirschner, W. Meyer, M. Krause, S. Müller, L. Hammer, and K. Heinz, Phys. Rev. Lett. 93, 247203 (2004). 6. M. Bode, R. Pascal, and R. Wiesendanger, J. Vac. Sci. Technol. A 15, 1285 (1997). 7. S. M. Valvidares, J. Dorantes-Dávila, H. Isern, S. Ferrer, and G. M. Pastor, Phys. Rev. B 81, 024415 (2010). 8. K. Munbodh, F. A. Perez, C. Keenan, D. Lederman, M. Zhernenkov, and M. R. Fitzsimmons, Phys. Rev. B 83, 094432 (2011). 9. K. DeBell, A. B. MacIsaac, and J. P. Whitehead, Rev. Mod. Phys. 72, 225 (2000). 10. A. Kashuba and V. L. Pokrovsky, Phys. Rev. Lett. 70, 3155 (1993). 11 A. B. Kashuba and V. L. Pokrovsky, Phys. Rev. B 48, 10335 (1993). 12. P. Bruno, Phys. Rev. B 43, 6015 (1991). 13. F. El Gabaly, S. Gallego, C. Muñoz, L. Szunyogh, P. Weinberger, C. Klein, A. K. Schmid, K. F. McCarty, and J. de la Figuera, Phys. Rev. Lett. 96, 147202 (2006). 14. S. Gallego, M. C. Muñoz, L. Szunyogh, and P. Weinberger, Philos. Mag. 88, 2655 (2008). 15. F. El Gabaly, K. F. McCarty, A. K. Schmid, J. de la Figuera, M. C. Muñoz, L. Szunyogh, P. Weinberger, and S. Gallego, New J. Phys. 10, 073024 (2008). 16. M. S. Altman, J. Phys.: Condens. Matter 22, 084017 (2010). 17. MKS Gas Correction Factors for Ionization Vacuum Gauges, [http://www.mksinst.com/docs/UR/gaugeGasCorrection.aspx]. 18. K. Grzelakowski, T. Duden, E. Bauer, H. Poppa, and S. Chiang, IEEE Trans. Magn. 30, 4500 (1994). 19. T. Duden and E. Bauer, Rev. Sci. Instrum. 66, 2861 (1995). 20. R. Ramchal, A. K. Schmid, M. Farle, and H. Poppa, Phys. Rev. B 69, 214401 (2004). 21. N. Rougemaille and A. K. Schmid, Eur. Phys. J. Appl. Phys. 50, 20101 (2010). 22. S. Gallego, N. Sanchez, S. Martin, M. C. Muñoz, and L. Szunyogh, Phys. Rev. B 82, 085414 (2010). 23. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). 24. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993). 25. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994). 26. G. Kresse and J. Furthmuller, ¨ Comput. Mater. Sci. 6, 15 (1996). 27. G. Kresse and J. Furthmuller, ¨ Phys. Rev. B 54, 11169 (1996). 28. J. Zabloudil, R. Hammerling, L. Szunyogh, and P. Weinberger, Electron Scattering in Solid Matter: A Theoretical and Computational Treatise (Springer-Verlag, New York, 2005). 29. F. El Gabaly, J. M. Puerta, C. Klein, A. Saa, A. K. Schmid, K. F. McCarty, J. I. Cerda, and J. de la Figuera, New J. Phys. 9, 80 (2007). 30. M. E. Bridge, C. M. Comrie, and R. M. Lambert, J. Catal. 58, 28 (1979). 31. K. Christmann, Surf. Sci. Rep. 9, 1 (1988). 32. K. M. E. Habermehl-Cwirzen, K. Kauraala, and J. Lahtinen, Phys. Scr. T 108, 77 (2004). 33. W. Lisowski, Appl. Surf. Sci. 31, 451 (1988). 34. J. B. Pendry, J. Phys. C 13, 937 (1980). 35. A. Lehnert, S. Dennler, P. Blonski, S. Rusponi, M. Etzkorn, G. Moulas, P. Bencok, P. Gambardella, H. Brune, and J. Hafner, Phys. Rev. B 82, 094409 (2010). 36. C. Won, Y. Z. Wu, J. Choi, W. Kim, A. Scholl, A. Doran, T. Owens, J. Wu, X. F. Jin, and Z. Q. Qiu, Phys. Rev. B 71, 224429 (2005). 37. J. Choi, J. Wu, C. Won, Y. Z. Wu, A. Scholl, A. Doran, T. Owens, and Z. Q. Qiu, Phys. Rev. Lett. 98, 207205 (2007). 38. Y. Z. Wu, C. Won, A. Scholl, A. Doran, H. W. Zhao, X. F. Jin, and Z. Q. Qiu, Phys. Rev. Lett. 93, 117205 (2004). 39. N. Saratz, A. Lichtenberger, O. Portmann, U. Ramsperger, A. Vindigni, and D. Pescia, Phys. Rev. Lett. 104, 077203 (2010). 40. H. Fritzsche, J. Kohlhepp, H. J. Elmers, and U. Gradmann, Phys. Rev. B 49, 15665 (1994). 41. H. P. Oepen, M. Speckmann, Y. Millev, and J. Kirschner, Phys. Rev. B 55, 2752 (1997). 42. A. K. Schmid, A. Mascaraque, B. Santos, and J. de la Figuera, US Patent No. 032990, 2010.
Collections