Publication:
Valence band circular dichroism in non-magnetic Ag/Ru(0001) at normal emission

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-08-03
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
For the non-magnetic system of Ag films on Ru(0001), we have measured the circular dichroism of photoelectrons emitted along the surface normal, the geometry typically used in photoemission electron microscopy. Photoemission spectra were acquired from micrometer-sized regions having uniformly thick Ag films on a single, atomically flat Ru terrace. For a single Ag layer, we find a circular dichroism that exceeds 6% at the d-derived band region around 4.5 eV binding energy. The dichroism decreases as the Ag film thickness increases to three atomic layers. We discuss the origin of the circular dichroism in terms of the symmetry lowering that can occur even in normal emission.
Description
© Institute of Physics This research was supported by the U.S. Department of Energy under contracts No. DEAC04-94AL85000 and DE-AC02-05CH11231 and by the Spanish Ministry of Science and Innovation under Projects No. MAT2009-14578-C03-01 and No. FIS2007-64982.
Unesco subjects
Keywords
Citation
[1] Wolfgang Kuch and Claus M. Schneider. Magnetic dichroism in valence band photoemission. Rep. Prog. Phys., 64:147–204, 2001. [2] J. Henk, T. Scheunemann, S. V. Halilov, and R. Feder. Magnetic dichroism and electron spin polarization in photoemission: analytical results. J. Phys.: Cond. Mat., 8:47–65, 1996.Valence Band Circular Dichroism in non-magnetic Ag/Ru(0001) at normal emission 9 [3] C. M. Schneider. Soft X-ray photoemission electron microscopy as an element-specific probe of magnetic microstructures. J. Mag. Mag. Mat., 175:160–176, 1997. [4] R. Q. Hwang, J. C. Hamilton, J. L. Stevens, and S. M. Foiles. Near-surface buckling in strained metal overlayer systems. Phys. Rev. Lett., 75(23):4242–4245, 1995. [5] W. L. Ling, J. de la Figuera, N. C. Bartelt, R. Q. Hwang, A. K. Schmid, G. E. Thayer, and J. C. Hamilton. Strain relief through heterophase interface reconstruction: Ag(111)/Ru(0001). Phys. Rev. Lett., 92:116102, 2004. [6] A. Bzowski, T. K. Sham, R. E. Watson, and M. Weinert. Electronic structure of Au and Ag overlayers on Ru(001): The behavior of the noble-metal d bands. Phys. Rev. B, 51:9979, 1995. [7] WL Ling, JC Hamilton, K Thurmer, GE Thayer, J de la Figuera, RQ Hwang, CB Carter, NC Bartelt, and KF McCarty. Herringbone and triangular patterns of dislocations in Ag, Au, and AgAu alloy films on Ru(0001). Surf. Sci., 600:1735–1757, 2006. [8] Hubert Ebert and Gisela Schtz, editors. SpinOrbit-Influenced Spectroscopies of Magnetic Solids, volume 466. Springer Berlin Heidelberg, 1996. [9] N. A. Cherepkov. Circular dichroism of molecules in the continuous absorption region. Chem. Phys. Lett., 87:344–348, 1982. [10] Richard L. Dubs, S. N. Dixit, and V. McKoy. Circular dichroism in photoelectron angular distributions from oriented linear molecules. Phys. Rev. Lett., 54:1249, 1985. [11] F. Venturini, J. Min´ar, J. Braun, H. Ebert, and N. B. Brookes. Soft x-ray angle-resolved photoemission spectroscopy on Ag(001): Band mapping, photon momentum effects, and circular dichroism. Phys. Rev. B, 77:045126, 2008. [12] H. P. Oepen, K. Hünlich, and J. Kirschner. Spin-dependent photoemission intensities from solids. Phys. Rev. Lett., 56:496, 1986. [13] J Garbe and J Kirschner. Spin-dependent photoemission intensities from platinum(111). Phys. Rev. B, 39:9859–9864, 1989. [14] GH Fecher, J Braun, A Oelsner, C Ostertag, and G Schonhense. Dichroism in angle-resolved photoemission from Pt(111). Surf. Rev. Lett., 9(2):883–888, 2002. [15] G. Schönhense, C. Westphal, J. Bansmann, M. Getzlaff, J. Noffke, and L. Fritsche. Circular dichroism in photoemission from surfaces. Surf. Sci., 251-252:132–135, 1991. [16] H. Daimon, T. Nakatani, S. Imada, and S. Suga. Circular dichroism from non-chiral and nonmagnetic materials observed with display-type spherical mirror analyzer. J. Elec. Spec. Rel. Phen., 76:55–62, 1995. [17] G.H. Fecher. Circular dichroism in photoemission from non-magnetic materials. Jap. J. App. Phys., 38:582–587, 1999. [18] Burke Ritchie. Theoretical studies in photoelectron spectroscopy. molecular optical activity in the region of continuous absorption and its characterization by the angular distribution of photoelectrons. Phys. Rev. A, 12:567, 1975. [19] To quantify the asymetry between different light polarizations, we calculate A = (Iσ+−Iσ−) (Iσ++Iσ−) . [20] T. Schmidt, S. Heun, J. Slezak, J. Diaz, K. C. Prince, G. Lilienkamp, and E. Bauer. Speleem: Combining leem and spectroscopic imaging. Surf. Rev. Lett., 5(6):1287–1296, 1998. [21] Arantzazu Mascaraque, Lucia Aballe, José F. Marco, Tevfic Onur Mentes, Farid El Gabaly, Christoph Klein, Andreas K. Schmid, Kevin F. McCarty, Andrea Locatelli, and Juan de la Figuera. Measuring the magnetization of three monolayer thick Co islands and films by X-ray dichroism. Phys. Rev. B., 80:172401, 2009. [22] W. L. Ling, T. Giessel, K. Thurmer, R. Q. Hwang, N. C. Bartelt, and K. F. McCarty. Crucial role of substrate steps in de-wetting of crystalline thin films. Surf. Sci., 570:L297–L303, 2004. [23] H. Eckardt, L. Fritsche, and J. Noffke. Self/consistent relativistic band structure of the noble metals. J. Phys. F, 14:97, 1984. [24] J. de la Figuera, J.M. Puerta, J.I. Cerda, F. El Gabaly, and K.F. McCarty. Determining the structure of Ru(0001) from low-energy electron diffraction of a single terrace. Surf. Sci., 600:L105–L109, 2006.
Collections