TESIS DOCTORAL
Interacción genético-ambiental en esclerosis múltiple

MEMORIA PARA OPTAR AL GRADO DE DOCTORA

PRESENTADA POR
Teresa Cristina Guijarro Castro

Director
Jorge Matías-Guia Guía

Madrid, 2013
Teresa Cristina Guijarro Castro

INTERACCIÓN GENÉTICO-AMBIENTAL EN ESCLEROSIS MÚLTIPLE

TESIS DOCTORAL

Dirigida por el Dr. Dº Jorge Matías-Guiu Guía. Catedrático de Medicina. Universidad Complutense de Madrid

Departamento de Medicina

Madrid
Septiembre 2013
AGRADECIMIENTOS

A mi familia, el verdadero motor de mi vida.

A los pacientes que dan sentido a mi trabajo. A sus familiares, sin cuya colaboración no habría sido posible este estudio.

A Delicias Muñoz, que creyó en mí y me ilusionó con el proyecto.

A Yolanda Aladro, Lucía Ayuso, Inma Bonaventura, Mª José Castro, Oscar Fernández, Lucienne Frossard, Rosa García, Mª Luisa Ginés, Laura Leyva, Ambrosio Miralles, Xavier Olascoaga, Carmen Picón, Elena Rodríguez y Elena Sánchez sin cuya colaboración no habría sido posible este proyecto.

A Rosa, Rocío, Luisa, Carmen, Javier, Miriam, Alberto, Nacho, Mª Ángeles y Teresa por estar a mi lado y a todos los que han colaborado, directa e indirectamente en que este trabajo haya sido posible.

A las compañías farmacéuticas Merck, Biogen-Idec y Bayer, por la contribución a la financiación del proyecto.

Al Dr. Jorge Matías-Guiu Guía por su interés y apoyo en la dirección de la tesis.
ÍNDICE

1. INTRODUCCIÓN ..1
 1.1 Factores genéticos ...2
 1.2 Factores ambientales ..2
 1.3 Epidemiología ambiental ...5
 1.4 Periodos de actuación de los factores ambientales5
 1.4.1 Durante el embarazo y periodo postnatal ...5
 1.4.2 Infancia y adolescencia ...6
 1.4.3 Edad adulta ..6
 1.5 Vitamina D y Esclerosis Múltiple ..6
 1.5.1 Niveles de vitamina D ...6
 1.5.2 Efectos de la vitamina D en la fisiopatología de la Esclerosis Múltiple 7
 1.5.3 Efectos de la vitamina D en la clínica de la Esclerosis Múltiple9
 1.5.4 Efectos de la vitamina D en la clínica de la Esclerosis Múltiple,
 durante la gestación y el postparto ..11
 1.5.5 Suplementación de Vitamina D en Esclerosis Múltiple12
 1.6 Epidemiología y vitamina D ..14
 1.6.1 Efecto de la latitud sobre la Esclerosis Múltiple14
 1.6.2 Efecto de la exposición solar sobre el riesgo de Esclerosis Múltiple ..16
 1.6.3 Efecto del mes de nacimiento y el riesgo de Esclerosis Múltiple16
 1.6.4 Efecto de los niveles de vitamina D y el riesgo de Esclerosis Múltiple 19
 1.7 Genética y vitamina D ..22
 1.7.1 Vitamina D y HLA-DRB1 ..23
 1.8 Resumen de las evidencias de la relación de la vitamina D con la E.M........28
 1.9 Resumen de los periodos donde la vitamina D puede actuar29

2. JUSTIFICACIÓN, HIPÓTESIS y OBJETIVOS ..30
 2.1 Objetivos del estudio ..31

3. PACIENTES, MATERIAL Y MÉTODOS ..32
 3.1 Diseño del estudio ...33
 3.2 Recogida de datos, elaboración de las bases de datos33
 3.2.1 Variables del estudio mes de nacimiento y E.M...............................37
 3.2.2 Variables del estudio de hábitos dietéticos y de vida37
 3.2.3 Variables del estudio mes de nacimiento y HLA38
ABREVIATURAS

AEMET: Agencia Estatal de Meteorología.
C. I.: Consentimiento informado.
D.M.: Diabetes Mellitus.
E.A.D.: Encefalomielitis aguda diseminada.
E.A.E.: Encefalitis alérgica experimental.
E.D.S.S.: Expanded Disability Status Scale.
E.M.P.P.: Esclerosis Múltiple Primaria Progresiva
E.M.S.P.: Esclerosis Múltiple Secundaria Progresiva.
H.L.A.: Human Leucocyte Antigen (Antígeno leucocitario humano)
R.I.S.: Radiologic Isolated Síndrome (Síndrome Radiológico Aislado)
U.I.: Unidad Internacional
U.V.: Ultravioleta.
V.D.R.: Receptores de vitamina D.
V.E.B.: Virus de Epstein-Barr.
1. INTRODUCCIÓN
1. INTRODUCCIÓN

A pesar del notable progreso científico realizado en los últimos años, la etiología de la esclerosis múltiple (E.M.) sigue siendo desconocida. La hipótesis patogénica más aceptada es que la E.M. es fruto de la conjunción de una determinada predisposición genética y un factor ambiental desconocido que originaría una respuesta inmunológica anormal contra el sistema nervioso central, lo que causaría la enfermedad.

1.1 Factores genéticos

La existencia de una susceptibilidad genética a padecer la enfermedad viene apoyada por múltiples evidencias. Los estudios en gemelos monocigóticos establecen una tasa de concordancia del 25-30%, mientras que en los dicigóticos y en hermanos no gemelos la concordancia no supera el 5%. A pesar de ello, esta cifra es muy superior al riesgo de padecerla de la población general (0.1-0.2%) (Ebers E, 2004).

Avalando la susceptibilidad genética, también se ha observado como la incidencia de la enfermedad es muy superior en la raza blanca, mientras que, por el contrario, existen otros grupos étnicos que parecen resistentes (japoneses, esquimales, maoríes, indios de Norteamérica, gitanos e individuos de raza negra) (Pugliatti M, 2002).

No se ha conseguido identificar un único gen responsable en la E.M. Sólo el complejo mayor de histocompatibilidad, situado en el cromosoma 6 (HLA DR15-DQ6), se ha asociado de forma consistente (Ramagopalan SV, 2009). Sin embargo, la presencia de estos alelos no ha demostrado ser suficiente ni indispensable para el desarrollo de la enfermedad, no estando claro tampoco la importancia que tiene en comparación con otros posibles factores genéticos. En este contexto, el mecanismo de herencia más probable es el poligénico, aunque hasta la fecha no se han encontrado otros genes que confieran susceptibilidad.

1.2 Factores ambientales

Los factores ambientales tienen gran relevancia. Es bien conocida la diferencia de prevalencia entre las distintas áreas geográficas del mundo en función de la latitud, e incluso, entre distintas regiones de un mismo país, teniendo que recurrir al clima, la dieta u otros factores ambientales para explicarlo (Pugliatti M, 2002). Además, la incidencia de la enfermedad ha cambiado en períodos cortos de tiempo en zonas determinadas y, la susceptibilidad puede modificarse por la emigración en edades tempranas, lo que se explicaría mejor por una alteración ambiental más que genética (Compston A, 2007).
han propuesto múltiples factores ambientales potenciales como la temperatura media ambiental, la exposición solar, el nivel social y sanitario, el grado de industrialización, la dieta, etc., sin haberse establecido de forma consistente una relación directa con ninguno de ellos.

1.2.1 **Factores de riesgo ambiental relacionados con la vitamina D y la radiación solar.**

La exposición solar temprana podría estar asociada al riesgo de E.M. al nacimiento, a través del déficit estacional durante la gestación, en las concentraciones maternas de vitamina D (Ebers, 2008). La gestación es una etapa vulnerable para el déficit de vitamina D, por el aumento de los requerimientos y la menor actividad al aire libre. Esta etapa crítica se extiende a la infancia y adolescencia.

Dos estudios independientes inmunológicos sobre la vitamina D y la E.M. se publicaron en 2010, con similares conclusiones. En el primero se sugería que la proliferación de linfocitos T CD4+ era inhibida por la 1,25 (OH) 2D, y que más células adoptaban un fenotipo T regulador (Handel, 2010). El segundo mostraba que el número de células regulatoras T se correlacionaba con los niveles séricos de 25 (OH) D y 1,25 (OH) 2D (Staples, 2010). Un estudio muestra cómo la vitamina D interacciona con el locus mayor de histocompatibilidad, que determina susceptibilidad a E.M. (Ramagopalan 2009a).

En el hemisferio norte hay más casos de pacientes con E.M. nacidos en Mayo y menos en los nacidos en Noviembre (al contrario que en Australia) (Willer, 2005; Ebers, 2008), y este patrón se relaciona con la exposición materna a la radiación ultravioleta ambiental en el primer trimestre de la gestación, ajustado por mes de nacimiento o lugar del mismo (Staples, 2010).

Las concentraciones de vitamina D en el primer trimestre de la gestación, pueden ser importantes en el desarrollo del sistema nervioso central, porque durante el desarrollo embrionario, los receptores de vitamina D se expresan en el neuroepitelio y más tarde en
áreas periventriculares. La mielinización ocurre más tarde (19-24 semanas). Según el estudio poblacional de Staples y colaboradores (2010), los suplementos de vitamina D en la prevención de la E.M. deberían darse desde el comienzo de la gestación.

En el último año también se ha sugerido que la ingesta de vitamina D durante la adolescencia, al contrario de lo que se pensaba, no reduce el riesgo de desarrollar E.M. y que, en cambio, la ingesta de leche entera aumenta dicho riesgo (Ebers, 2009).

Los estudios con gemelos también apoyan la interacción del ambiente con la predisposición genética. Existe una discordancia del 70-90% en gemelos idénticos (Willer, 2003). El riesgo para que un gemelo dicigótico (hijo de madre con E.M.) padezca E.M. es el doble que el de un hijo no gemelo, en Canadá. Sólo la interacción del ambiente durante la gestación o el nacimiento justificaría lo anterior.

Los estudios en hermanastros también implican un factor materno, que sería de naturaleza ambiental (Ebers, 2004). Los estudios de emigrantes muestran cómo el riesgo para padecer E.M. depende del lugar de residencia en épocas tempranas (Hammond, 2000), pero no es fácil estudiar retrospectivamente la etapa gestacional, perinatal e infantil en enfermedades que debutan en la etapa adulta.

1.2.2 Factores de riesgo ambiental relacionados con la exposición a agentes infecciosos.

La exposición a agentes infecciosos ambientales, durante la infancia y/o adolescencia, también se han relacionado con la etiología de la E.M.: el virus del moquillo canino, el del sarampión, el de la varicela zoster, el de la encefalitis por garrapatas, el HTLV-I, el virus del herpes 6 (VHH 6), el virus de Epstein-Barr, el retrovirus asociado con la EM (MSRV) y diversas partículas retrovirales (MSRV/HERV-W, RGH/HERV-H). También se ha relacionado la E.M. con el agente Clamydophila pneumoniae, sin que se haya confirmado (Fernández, 2005).

Varios estudios de casos y controles relacionaron el contacto con los perros y con el virus del moquillo canino, con la predisposición a padecer E.M. (Frutos-Alegria, 2002,
Ascherio, 2001), pero no se han comprobado. En cambio, el contacto con gatos y pájaros, se ha relacionado de manera inversa (Ghadirian P, 2001).

Un estudio de casos y controles confirma la ausencia de asociación entre las enfermedades típicas de la infancia y la E.M. (Hernan MA, 2011). También se ha relacionado la amigdalectomía y la E.M., no confirmándose. Se considera que podría involucrarse el fenómeno del mimetismo molecular y reconocimiento cruzado, entre los antígenos del agente infeccioso y de la mielina, para explicar un daño inmunomediado en el intento por eliminar una infección activa.

1.3 Epidemiología ambiental

La asociación de ciertos factores ambientales y la E.M. no indica necesariamente causalidad. En esta enfermedad, el tiempo entre la exposición a dichos factores y el debut de la enfermedad puede ser extenso.

Los estudios migratorios apoyan la susceptibilidad genética modificada por factores ambientales, que actuarían entre los 10-15 años:

1. Cuando se migra antes de los 14 años, de una zona de alto riesgo a otra de bajo riesgo, se adquiere el riesgo de la nueva zona (Compston, 2008).

2. El periodo mínimo de exposición es de 2 años y el de latencia de 18-19 años.

3. Según la raza, se mantienen algunas diferencias.

4. La adopción de la frecuencia del país de destino, no se produce hasta la generación de los hijos de los emigrantes, como se ha visto en Israel, Sudáfrica, Australia, Nueva Zelanda, Reino Unido y Estados Unidos.

Como ya hemos comentado antes, numerosos factores ambientales: infecciosos, exposición solar, vitamina D, exposición a tóxicos, exposición a animales, tabaco, etc., se han asociado con el desarrollo de E.M., pero es muy difícil establecer causalidad. Más adelante nos vamos a centrar en dos de ellos: la exposición solar y la vitamina D.

1.4 Periodos de actuación de los factores ambientales

1.4.1. Durante el embarazo y periodo posnatal.

El efecto materno se apoya en tres datos epidemiológicos:

a) Los hermanos con un solo padre común, tienen el doble de riesgo de padecer E.M. cuando es la madre y no el padre el progenitor común, con lo cual un factor ambiental en la gestación o posnatal lo explicaría (Ebers, 2004). Mecanismos epigenéticos también podrían explicarlo.
1. INTRODUCCIÓN.

b) La mayor concordancia entre gemelos dicigóticos (5,4%) que entre los hermanos no gemelos (2,9%) (Willer, 2003).

c) La tercera observación epidemiológica es el mes de nacimiento: como ya hemos comentado, en varios países del hemisferio norte, nacen más los pacientes con E.M. en el mes de Mayo y menos en Noviembre (Staples, 2010; McDowell, 2010; Willer, 2005). En los países por debajo del paralelo 42° es discutido. La hipótesis de la baja radiación solar y bajos niveles de vitamina D en la madre, durante la gestación, es el fundamento de este trabajo.

1.4.2. Infancia y adolescencia.

Se basa en los estudios de migraciones: los hijos de padres que emigran de zonas de baja prevalencia a zonas de alta prevalencia, tienen el riesgo de la población donde nacen. La migración de zonas de alta a baja prevalencia, hace que se adquiera la prevalencia de la nueva zona, si se migra antes de los 15 años.

1.4.3. Edad adulta.

La variabilidad en el desarrollo de la enfermedad y los años entre la posible exposición a los factores ambientales y el desarrollo de la enfermedad, indica la interacción de otros factores ambientales en edades posteriores.

En conclusión, la raza, la carga genética, la historia ambiental familiar, el mes de nacimiento, la latitud y el clima en donde se vive, las infecciones pasadas en la infancia y adolescencia y, el estilo de vida, incluido el tabaco, podrían contribuir al desarrollo de la E.M.

1.5 Vitamina D y Esclerosis Múltiple

En los últimos 5 años hemos asistido a una revitalización de un factor de riesgo ambiental clásico, como era el déficit de vitamina D. Se han añadido a las clásicas funciones de la vitamina D y del metabolismo del calcio, su participación en la diferenciación de las células inmunes y la modulación de la respuesta inmunitaria. También afecta al desarrollo (proliferación celular y apoptosis) y función cerebral como neurotransmisor. Se conocen al menos 50 genes cuya expresión depende o está mediada por la vitamina D, muchos de ellos no implicados en el metabolismo óseo (Berlanga-Taylor A, 2011).

1.5.1 Niveles de vitamina D.

Se ha establecido por consenso que los niveles mínimos de vitamina D serían de 50-100 nmol/L (20-40ng/mg). Estas cifras han cambiado recientemente y en la actualidad
se recomiendan de 75-80 nmol/L (Pierrot-Deseilligny, 2010). Estas cifras están basadas en estudios de enfermedades del metabolismo del calcio. Falta por concretar, a partir de qué cifras se consideran deficitarias el resto de las funciones de la vitamina D (Pierrot-Deseilligny, 2010; Ascherio, 2010).

Al considerar el nivel mínimo en 75nmol/L, son necesarias 2000 UI/día de media. En caso de baja radiación UV, la dieta rica en vitamina D podría suplementarlo. Desgraciadamente, sólo se encuentra en grasas de pescado azul (sardinas, arenques, salmón y atún), el hígado de vaca o ternera, los huevos, la leche, el queso y en la grasa de reno. Por este motivo, se enriquecen determinados alimentos con vitamina D. La exposición solar es la principal fuente natural de vitamina D, siendo el origen del 90% de las necesidades diarias. La exposición de media hora de la cara, tronco y brazos equivale a 10.000 UI de vitamina D.

Las personas jóvenes y de piel clara sintetizan más la vitamina D en la piel, que las personas ancianas, de raza negra, o aquellas que usen cremas protectoras, vivan en zonas urbanas, contaminadas o con niveles bajos de ozono (Ascherio, 2010).

Estudios poblacionales realizados en áreas por encima del paralelo 40º Norte (Canadá, Estados Unidos, Alemania, Reino Unido y Australia) y por debajo del paralelo 40º Sur (Estados Unidos), han encontrado niveles bajos de vitamina D en general, con variabilidad regional, estacional y según el color de piel y estilo de vida. En Estados Unidos (EE.UU.), se realizaron estudios de niveles de vitamina D en 2 cohortes, con una diferencia de 10 años, observando que los niveles de vitamina D caían hasta 10 nmol/L, en relación con el desarrollo de hábitos urbanos y con el incremento del sedentarismo y la obesidad (Asherio, 2010).

Los suplementos de vitamina D sólo son necesarios, para aquellas personas que estén alejadas crónicamente del sol, como son los trabajadores nocturnos o la población de países nórdicos. El 50-90% de la población de estos países presenta de forma estable déficit de vitamina D (Pierrot-Deseilligny, 2010).

1.5.2 **Efectos de la vitamina D en la fisiopatología de la Esclerosis Múltiple.**

Como ya hemos visto, la vitamina D tiene numerosas funciones inmunosupresoras: inhibe la diferenciación y función de las células dendríticas, suprime las respuestas Th1, regulando a la baja la síntesis de citoquinas pro-inflamatorias, realza la actividad de las células T reguladoras y la producción de citoquinas antiinflamatorias e inhibe la diferenciación de las células B.
El receptor de la vitamina D está presente en los linfocitos T y B activados, macrófagos, monocitos y células dendríticas. Estudios in vitro demuestran que la vitamina D inhibe la producción de citoquinas proinflamatorias de tipo Th1 como INF-γ, IL-2 e IL-12. También promueve el desarrollo de linfocitos T, que expresan antígeno-4 asociado al linfocito T citotóxico (CTLA-4) y FoxP3, aumentando así los linfocitos Th2 reguladores con un efecto antinflamatorio. Por otro lado, potencia el papel fagocítico de monocitos y macrófagos (Mahon, 2003).

La 1,25(OH)₂ D₃ ha demostrado un efecto preventivo y curativo de la encefalomielitis autoinmune experimental (E.A.E.), que es el mejor modelo experimental que existe de E.M. Este efecto necesita la presencia de calcio, sexo femenino, y que los niveles de los receptores de vitamina D, de la interleucina-10 (IL-10) y del receptor de la misma, se encuentren dentro de los límites normales. Los mecanismos implicados inmunológicos son antinflamatorios, sobre los macrófagos, sobre diferentes tipos de citoquinas, regulación de linfocitos T e incremento del balance de linfocitos Th2 (protectores), frente a Th1 (agresivos). Parece ser que este efecto protector de la vitamina D, vendría por la regulación de la función de las células T (Spanier, 2011).

Pero los efectos inmunomoduladores de 1,25 (OH)₂ D₃ son mayores en pacientes con E.M. del sexo femenino, que en los del sexo masculino (Correale, 2010). Aunque los niveles en suero de 1,25(OH)₂ D₃ sean similares en hombres y mujeres con E.M., los efectos inmunomoduladores en las células TCD4+ son mayores en las mujeres: la inhibición de la proliferación de células T es mayor en mujeres, y la vitamina D reduce el número de células secretoras de INF-γ e IL-17. También aumentaba el número de células secretoras de IL-10 y de células T reguladoras CD4+CD25+FoxP3+ en mujeres con E.M. respecto a los hombres. Las mujeres con EM presentaban menor expresión del gen CYP24A1, que codifica para la encima que inactiva 1,25(OH)₂ D₃ y presentaban mayor unión e internalización de proteína de unión a la vitamina D (PUVD) a células T CD4+, células T autorreactivas y macrófagos. La explicación a estas diferencias entre sexos, podrían ser debidas a que las mujeres inactivan la vitamina D más lentamente, por lo que sus efectos antinflamatorios son más prolongados e intensos, al permanecer más tiempo en el interior de las células.

El metabolismo de la vitamina D3 depende de la expresión de la encima que lo activa, codificada por el gen CYP27B1 y de la que la inactiva, codificada por el gen CYP24A1. La actividad de estas 2 encimas está controlada, por la afinidad de la PUVD por el precursor 25(OH) D₃. En este estudio se objetiva que las cantidades de proteína de unión a la vitamina D asociadas a células activadas, en mujeres, es de 2-5 veces
superior a la de los hombres. Los estrógenos inhiben la expresión de CYP24A1, e inducen mayor unión e internalización de la proteína de unión de la vitamina D a células T autorreactivas y macrófagos, produciendo que la vitamina D se acumule en las células del sistema inmune.

Este efecto sinérgico de la vitamina D y los estrógenos sobre el sistema inmune, explicaría porqué la enfermedad mejora durante el embarazo, con niveles estrogénicos muy altos, y empeora en el postparto, con la brusca disminución de dichos niveles.

En esta misma línea, otro estudio (Koch-Henriksen, 2010) ha demostrado que los estrógenos controlan la resistencia a la E.A.E., mediada por la vitamina D3, mediante el control del metabolismo y la expresión de la vitamina D3. La vitamina D incrementaría la biosíntesis de estrógenos, mediante una regulación al alza de la estrógeno-sintetasa, a través de la expresión del receptor de la vitamina D (RVD). Este aumento estrogénico induciría la síntesis y función de la vitamina D, mediante la regulación a la baja de la Cyp24a1, y la regulación al alza de RVD. Este mecanismo permite que actúen de forma sinérgica los estrógenos y la vitamina D.

La vitamina D revierte los signos de E.A.E. y, los estrógenos no, y en cambio, los estrógenos inhiben la E.A.E en ratones con una alteración de la IL-10, mientras que la vitamina D no lo hace. Es decir, aunque actúen de forma sinérgica tienen mecanismos de acción diferentes. Este mecanismo sinérgico, podría explicar el aumento del ratio de prevalencia en la E.M. a favor de las mujeres, que no se explica por factores genéticos ligados al sexo, ni por factores hormonales.

Recientemente, se ha demostrado que el déficit de vitamina D disminuye la severidad y retrasa el desarrollo de E.A.E. (DeLuca, 2011), y que la radiación solar, con independencia de los niveles de vitamina D, puede detener el desarrollo de E.A.E., al frenar la respuesta inmunológica mediada por Th1 (Becklund, 2010).

1.5.3 **Efectos de la vitamina D en la clínica de la Esclerosis Múltiple.**

Se ha asociado un mayor riesgo de brotes en la E.M., con niveles séricos bajos de vitamina D. También se ha observado una variación estacional en la frecuencia de brotes, y de las lesiones captantes de gadolinio (Auer, 2000; Tremlett, 2008; Embry, 2000). Se ha discutido que esta variación estacional podría tener más relación con las infecciones virales, que tienen el mismo patrón estacional (Andersen, 1993).

También se sabe que los niveles de vitamina D son menores en los brotes de los pacientes con E.M., comparado con los periodos interbrotes (Correale, 2009; Smolders, 2008), y que hay una relación inversa entre la severidad de la enfermedad y los niveles
de vitamina D (Ozgocmen, 2005; Van der Meir, 2011). Podría ser que el propio brote disminuya los niveles de vitamina D (Willett, 1998). Estos estudios presentan un factor de confusión al ser transversales, e impiden asociar un efecto beneficioso de la vitamina D en los brotes, o menores niveles en enfermedad más severa. Un estudio ha demostrado que los niveles de vitamina D en LCR de pacientes con E.M., que son más indicativos de los niveles de vitamina D en el sistema nervioso, eran similares entre controles sanos y pacientes con E.M., y no se relacionaban con la presencia de brotes o actividad en lesiones desmielinizantes (Holmoy, 2009).

Es muy interesante un estudio de 110 niños con sindrome clínicamente aislado (S.C.A.), en el que el factor predictor más potente para desarrollar un segundo brote, era el nivel basal de vitamina D (Mowry, 2010). Se disminuía un 34% el riesgo de un segundo brote, con una elevación de 25 nmol/l de los niveles séricos de vitamina D. También hacen un genotipado del HLA-DRB1, ya que hay un elemento de respuesta a la vitamina D en la región promotora de los haplotipos HLA-DRB1*15. La forma activa de la vitamina D aumenta la expresión de HLA-DRB1*15 in vitro (Ramagopalan, 2009). Esto indica la hipotética posibilidad de que los suplementos de vitamina D sean perjudiciales en algunos pacientes con E.M.. En este estudio, la presencia de HLA DRB1*1501/1503 no se asoció con la tasa de recaídas, ni modificó substancialmente la asociación de la tasa de recaídas con el nivel de vitamina D. La reducción estimada en la tasa de recaídas, fue menor en los pacientes negativos para el HLA DRB1*1501/1503.

Otro estudio en pacientes adultos con E.M.R.R., reveló que los niveles altos de vitamina D, estaban asociados con una mayor probabilidad de estar libres de brotes (Smolders, 2008). Pero existen factores que pueden interaccionar en los estudios sobre el riesgo de E.M. y la vitamina D. Como se muestra en la figura 1 (Ascherio, 2010), la asociación entre el riesgo de E.M. y la ingesta de vitamina D puede ser modificada por la latitud, el tabaco o la ingesta de otros nutrientes (B). El tabaco afecta a las concentraciones de hormonas paratiroides y a la unión de la vitamina A con los receptores de ácido retinoico, que forman heterodímeros con el VDR. Los efectos directos de la radiación solar pueden confundir la asociación entre vitamina D y riesgo de E.M. (C). Los factores genéticos pueden confundir, si los genes que determinan el color de la piel están independientemente correlacionados con el riesgo de E.M. (D).
1. INTRODUCCIÓN.

Fig.1.-Factores que potencialmente pueden crear confusión e interacción en los estudios sobre vitamina D y riesgo de E.M. (Ascherio, 2010).

1.5.4 **Efectos de la vitamina D en la clínica de la Esclerosis Múltiple, durante gestación y postparto.**

Se sabe que hay un riesgo aumentado de tener déficit de vitamina D entre mujeres sanas, embarazadas y lactantes, por lo que sería esperable que las mujeres con E.M., presentaran también mayor actividad de la enfermedad en estas etapas. Pero hay estudios que describen que, durante el embarazo, el riesgo de brotes disminuye para aumentar en el posparto, y que durante la lactancia materna, no presentan un aumento del número de brotes.

En un estudio (Langer-Gould, 2010) de 32 mujeres embarazadas con E.M., se observó que tenían niveles bajos de vitamina D durante el embarazo y lactancia, pero que no se asociaban con un riesgo mayor de brotes. Es más, encontraron niveles mayores de vitamina D, 3-6 meses tras el parto, en aquellas mujeres que tuvieron brotes. La explicación que dan no es que los niveles mayores de vitamina D originen brotes, sino que las mujeres que los presentaban, eran las que no habían dado lactancia materna.
1. INTRODUCCIÓN.

La explicación que dan a esta falta de asociación con los niveles de vitamina D durante la gestación y postparto, es que factores asociados con el embarazo y la lactancia, anulan los factores pro-inflamatorios del déficit de vitamina D.

1.5.5 Suplementación de vitamina D en Esclerosis Múltiple.

Los niveles altos de vitamina D podrían condicionar una reducción del riesgo de desarrollar E.M. (Royal, 2009), un beneficio en la progresión de la misma (Smolders, 2008; Holmoy, 2009; Mowry, 2010), y una mejora de la regulación de los linfocitos T. (Royal, 2009).

Bajo esta perspectiva en la cual, suplementando con dosis de 1000-4000 UI de vitamina D se podría mejorar el pronóstico de la E.M., se han iniciado los primeros ensayos para evaluar el perfil de seguridad y los efectos inmunológicos de este suplemento, en los pacientes con E.M.

En un estudio piloto en pacientes con Esclerosis Múltiple Remitente-Recurrente (E.M.R.R.), con al menos un brote en el último año, el suplemento de 100 UI de calcitriol al día durante 48 semanas, se toleró bien y fue seguro durante un año (Wingerchuk, 2005).

En 2007, Kimball y colaboradores, administraron a 12 pacientes con E.M. altas dosis de colecalciferol oral (28.000-280.000 UI semanales) y 1,2 gramos de calcio diario durante 28 semanas. No hubo efectos adversos y, aunque no hubo cambios en el número de brotes, se redujo el número de lesiones captantes de gadolinio de 1.75 a 0.83.

En 2010, Burton y colaboradores, realizaron un ensayo fase I/II con escalada de dosis de vitamina D y calcio en E.M. en 49 pacientes, seguidos durante 52 semanas y con una dosis máxima de 280.000 UI/semana y calcio suplementario. Parece ser que la combinación de vitamina D y suplementos de calcio, es más efectiva tanto en modelos de encefalomielitis autoinmune experimental, como en ensayos de prevención de cáncer en humanos. No hubo cambios en los niveles de citoquinas ni metaloproteasas. Este ensayo demuestra que la ingesta de vitamina D a altas dosis es segura, aunque podrían aparecer efectos adversos a más largo plazo. Bajo la hipótesis de que altas dosis de vitamina D pueden reducir el número de brotes, y la progresión de la discapacidad en E.M., los mismos autores han iniciado un estudio multicéntrico, aleatorizado, fase II y ciego, para valorar variables clínicas y de resonancia magnética.

Recientemente, (Stein, 2011) un ensayo fase II con 23 pacientes con E.M., aleatorizado y ciego, comparando altas dosis (6.000 UI para conseguir niveles séricos de 130-175 nM) y bajas dosis de suplementos de vitamina D (1000 UI), no ha demostrado
ser más efectivo en reducir el número de lesiones en RM, a los 6 meses. La crítica del mismo sería que el tiempo de evaluación ha sido a los 6 meses.

Un estudio ha valorado los efectos inmunológicos de la vitamina D en la E.M. (Mahon, 2003). Es un ensayo doble ciego, controlado con placebo, donde se administraron 1000 UI de colecalciferol al día durante 6 meses, no hubo cambios significativos en las citoquinas medidas (factor de necrosis tumoral, INF-γ e interleuquina 13).

Por todo lo anteriormente expuesto, parece altamente sugestivo que la vitamina D juega un papel dentro de la patogenia de la E.M. A continuación se señalan los ensayos clínicos actualmente en marcha, para demostrar su eficacia como tratamiento eficaz de la enfermedad. Como ya se comentó anteriormente, hay estudios en marcha para establecer su valor preventivo en el desarrollo de la enfermedad (Munger, 2011) y previamente se realizaron varios estudios en fase II, para demostrar la seguridad y tolerancia de la vitamina D. En el año 2011, en Australia, se realizó un ensayo clínico a 6 meses con 23 pacientes, de los cuales 19 pacientes ya estaban tratados con copolímero. El ensayo era randomizado doble-ciego y todos recibían 1000UI de vitamina D diarias para prevenir el déficit y, un brazo recibió 6000UI de vitamina D2 diarias para alcanzar niveles de 130-175 nM. El objetivo primario de reducir el número de lesiones captantes de gadolinio no se obtuvo. Incluso los pacientes tratados con altas dosis, tuvieron una EDSS más alta que los tratados con bajas dosis (Stein, 2011), pero se demostró la seguridad de dichas dosis.

Un ensayo publicado en febrero del 2012, suplementando con 20.000 UI/semanales de vitamina D, a 98 pacientes con E.M. (35 tratados y 33 placebo), durante 96 semanas, no ha encontrado diferencias en las escalas de discapacidad, fuerza y fatiga (Kampman, 2012). La crítica a este ensayo sería la baja dosis utilizada.

Se han puesto en marcha ensayos fase II, como el EVIDIMS, para comparar suplementos con altas dosis (10.200 UI/día) y bajas dosis (200 UI/día) (Dohr, 2012). Un estudio con voluntarios sanos y suplementos a altas dosis (5.000-10.000UI/día), ha encontrado a las 15 semanas, un incremento de la IL10, con una disminución de las células Th17, lo que prueba sus efectos inmunomoduladores (Allen, 2012) y su buena tolerancia.

Son necesarios estudios de cohortes poblacionales con seguimiento a largo plazo y con diferentes medidas de vitamina D, según la estación, para ver el riesgo real de E.M., en caso de déficit de vitamina D.
En la práctica clínica diaria es preciso determinar el nivel de vitamina D en los pacientes con E.M., y administrar suplementos vitamínicos, en caso de déficit. También se ha postulado extender dicha determinación a los pacientes con SCA (Mowry, 2010), familiares de primer grado de pacientes con E.M. y jóvenes que hayan padecido mononucleosis infecciosa, para tratarlos en caso de déficit (Disanto G, 2011).

Como ya se comentará más adelante, los pacientes portadores de HLA-DRB1*15, son más sensibles al déficit de vitamina D, por lo que se insiste en que si se suplementara la población con vitamina D, sería más eficaz seleccionando a los sujetos portadores de HLA-DRB1*15 (Handunnetthi, 2010).

1.6 Epidemiología y vitamina D

1.6.1 *Efecto de la latitud sobre la Esclerosis Múltiple.*

El efecto latitudinal es bien conocido, y aunque con excepciones, podría explicar porqué la prevalencia de la E.M. aumenta conforme nos alejamos del ecuador. De esta forma, los países situados al norte del paralelo 40º, en el hemisferio norte y al sur del mismo, en el hemisferio sur, son los que más prevalencia de E.M. tienen.

Aunque algunos trabajos recientes discuten el efecto latitudinal (Koch-Henriksen, 2010), este efecto se ha observado a escala mundial en muchos países y continentes, sobre todo en poblaciones de origen en el norte de Europa y también en países como Estados Unidos (Kurtzke, 2008), Francia (Vukusic, 2007), Nueva Zelanda (Taylor, 2008) y Australia (Van der Meir, 2011).

La radiación solar es el factor ambiental más relacionado con la latitud. En un análisis geoespacial en Estados Unidos y Canadá (Beretich, 2009), observaron una correlación negativa entre la prevalencia de E.M. y los niveles de radiación ultravioleta (Fig. 2). Esta misma relación se confirmó en Francia (Vukusic, 2007), con un estudio de prevalencia en granjeros, junto con mapas de radiación solar media. Este tipo de poblaciones es considerado ideal por los expertos, ya que no sufren de migraciones ni de cambios en las características medioambientales, y tienen un trabajo al aire libre, por lo que el condicionante ambiental es muy importante. Llama la atención como hay una zona de la costa atlántica francesa con menor prevalencia, por lo que piensan que factores nutricionales pueden modificar esta asociación (Fig. 3).
En conclusión, estos datos confirman una relación más significativa entre radiación solar y E.M., que entre latitud y E.M. Es más, en latitudes similares, el riesgo de E.M. es menor en las zonas más soleadas (Van der Mei, 2011).
1. INTRODUCCIÓN.

1.6.2 **Efecto de la exposición solar sobre el riesgo de Esclerosis Múltiple.**

Los primeros trabajos se basaron en estudios casos-controles, midiendo el tiempo de exposición solar en infancia y juventud, durante las vacaciones y fines de semana, a través de cuestionarios que se pasaban a los pacientes y controles sanos. De esta forma se estableció, que el riesgo de E.M. era menor en aquellos pacientes que habían tenido mayor exposición solar en dichas épocas. Para añadir validez, por el inevitable sesgo del recuerdo, añadian valoraciones dermatológicas de las lesiones actínicas en el dorso de la mano (Kampman, 2007; Van der Mei, 2003).

Un metaanálisis reciente con 52 estudios de varios países, objetiva una relación altamente significativa, entre la prevalencia de E.M. y el acúmulo anual de radiación ultravioleta en dichas áreas, 20 veces más significativa que la encontrada entre la prevalencia de E.M. y la latitud (Sloka, 2009).

Los estudios que muestran menor número de cánceres relacionados con la exposición solar, en pacientes con E.M., han de estudiarse con cautela, ya que la propia enfermedad limita la movilidad y la exposición solar, y el calor, puede aumentar los síntomas de la misma (Pierrot-Deseilligny, 2010; Ascherio, 2010a).

En cambio, los estudios en inmigrantes judíos en Israel son muy interesantes, porque existe una mayor incidencia de E.M. en judíos descendientes de afroasiáticos, que en sus antepasados, con la misma exposición solar. La tasa de prevalencia de E.M. en la población judía, en Israel, es mayor que en la población árabe, que vive en esa misma área. Los cambios de estilo de vida, las medidas preventivas frente a la radiación solar, y las diferencias raciales, podrían explicar estas diferencias (Pierrot-Deseilligny, 2010; Ascherio, 2010a).

1.6.3 **Efecto del mes de nacimiento y el riesgo de Esclerosis Múltiple.**

Las concentraciones de vitamina D en el primer trimestre de la gestación pueden ser importantes en el desarrollo del sistema nervioso central, porque durante el desarrollo embrionario, los receptores de vitamina D se expresan en el neuroepitelio y más tarde, en áreas periventriculares. La mielinización ocurre más tarde (19-24 semanas). Según el estudio poblacional de Staples y colaboradores (2010), los suplementos de vitamina D en la prevención de la E.M., deberían administrarse desde el comienzo de la gestación.
Los estudios con gemelos también apoyan la interacción del ambiente con la predisposición genética. Como ya se ha comentado anteriormente, existe una discordancia del 70-90% en gemelos idénticos (Willer, 2003). El riesgo para que un gemelo dicigótico (hijo de madre con E.M.) padezca E.M., es el doble que el de un hijo no gemelo, en Canadá. Sólo la interacción del ambiente durante la gestación o el nacimiento, justificaría lo anterior.

Los estudios del mes de nacimiento y el riesgo de E.M. se han llevado a cabo en varias cohortes, pero ni el tamaño, grupo racial ni los métodos estadísticos eran similares. Estos estudios han encontrado meses diferentes de nacimiento asociados al riesgo de padecer E.M. (Torrey, 2000; Rothwell, 1998; Torrey, 1997). Se ha publicado que en el hemisferio norte, hay más casos de pacientes con E.M. nacidos en Mayo y menos en los nacidos en Noviembre (al contrario que en Australia) (Willer, 2005; Staples, 2010). Este patrón se relaciona con la exposición materna a la radiación ultravioleta ambiental, en el primer trimestre de la gestación, ajustado por mes de nacimiento o lugar del mismo.

En el estudio poblacional realizado por Ebers y colaboradores en 2005 (Willer, 2005), con 17.874 pacientes procedentes de Canadá, Gran Bretaña, Dinamarca y Suecia, se observó que los pacientes con E.M. nacían más en el mes de mayo, y menos en noviembre (Fig. 4). Estos datos se replicaron en el hemisferio sur, con un estudio australiano (Staples, 2010). La menor radiación solar durante los primeros meses de embarazo (octubre, noviembre, diciembre y enero), explicaría el mayor nacimiento de pacientes con E.M en mayo. El menor nacimiento en noviembre se explicaría por el factor protector de la mayor radiación solar, durante los meses de abril, mayo, junio y julio. En Australia, al ser el hemisferio sur, julio es mediado el invierno y enero, mediado el verano, por lo que los meses de más nacimientos son noviembre-diciembre y los de menos, mayo y junio (Fig.5).
1. INTRODUCCIÓN.

Fig. 4.- Análisis poblacional de los nacimientos observados/esperados en pacientes con E.M. de Canadá, Gran Bretaña, Dinamarca y Suecia, con intervalos de confianza del 95% (Willer, 2005).

Fig. 5.- Riesgo de E.M. según el mes de nacimiento en Australia. Mayo-Junio son los meses de menos nacimientos y noviembre-diciembre los de más nacimientos, al contrario que en el hemisferio norte (Staples, 2010).

En otras latitudes (Fig. 6), no se ha podido comprobar lo anterior, pero un estudio americano muestra, como esta tendencia a que el mayor número de nacimientos de los pacientes con E.M. sea en la primavera en el hemisferio norte, se observa por encima del paralelo 42º (Munger, 2011).
INTRODUCCIÓN.

El único estudio que relaciona el mes de nacimiento con la latitud, radiación solar en lugar de nacimiento y edad de inicio de la enfermedad, se realizó en la cohorte nacional de 967 veteranos del Multiple Sclerosis Surveillance Registry norteamericano, llegando a la conclusión de que los pacientes con E.M.R.R. que nacieron en invierno, y cuyo lugar de nacimiento era en áreas de baja radiación solar, tenían un comienzo de la enfermedad 2.8 años antes que los que nacieron en otra estación, y en áreas de radiación solar media-alta (p=0.02) (McDowell, 2010).

Este mismo grupo de estudio, encontró que los pacientes con E.M.R.R., que residían en áreas de baja exposición solar y habían tenido baja exposición solar entre los 6-15 años de edad, iniciaron la enfermedad 2.1 años antes que los demás.

Igualmente McDowell en su trabajo del año 2011 reseñó que la ingesta de aceite de hígado de bacalao en la infancia, se asoció con un retraso de la enfermedad de 4 años.

1.6.4 Efecto de los niveles de vitamina D y el riesgo de Esclerosis Múltiple.

Se realizaron estudios en cohortes prospectivas para valorar el riesgo que añadía el déficit de vitamina D, al desarrollo de E.M. En una cohorte de 257 militares norteamericanos (Munger, 2006), se determinaron los niveles de vitamina D en el tiempo, y se observó un efecto protector frente a la E.M. en aquellos que tenían niveles altos de vitamina D (>100 nmol/l), frente a los que tenían niveles bajos (<75 nmol/l). El efecto era más marcado para los niveles medidos antes de los 20 años de edad, confirmando cómo esta etapa es clave, para el desarrollo de susceptibilidad a la enfermedad. En este mismo
1. INTRODUCCIÓN.

estudio, se vio una falta de asociación entre los niveles de vitamina D y el riesgo de E.M. entre los militares de raza negra, lo que sugiere que son necesarias dosis muy altas de vitamina D, para observar un efecto beneficioso en esta población (Fig.7).

![Fig.7.- Niveles de vitamina D y riesgo de E.M. en jóvenes militares americanos de raza blanca. (Munger, 2006).](image)

En otro estudio con 200.000 enfermeras americanas, se determinaron los niveles de vitamina D a través de cuestionarios semicuantitativos de dieta y suplementación. Estos resultados se validaron con muestras sanguíneas, repetidas cada 4 años, en 300 participantes. Se hizo un seguimiento durante 30 años, y se identificaron los casos incidentes de E.M. En este estudio se observó que a mayor tasa de vitamina D, menor riesgo de E.M. Las mujeres que tomaban suplementos de vitamina D (a partir de 400 UI), tenían una incidencia 41% menor que las que no lo tomaban (Fig.8) (Munger, 2010; Ascherio, 2010).

En el año 2001, en esta misma cohorte de 200.000 enfermeras, se realizó un cuestionario a 35.794 madres de dichas enfermeras, para ver la dieta durante la gestación de las mismas, y estudiar la relación de los niveles esperados de vitamina D durante la gestación, y el riesgo de desarrollar E.M. Se diagnosticó E.M. en 199 mujeres. El riesgo relativo de desarrollar E.M. fue un 38% menor, en las hijas de las madres que tomaron de 2 a 3 vasos diarios de leche durante la gestación, frente a las que tomaban menos de 3 vasos mensuales (Mirzaei, 2011).
Fig. 8: Riesgo de E.M. y suplementos de vitamina D entre mujeres del Nurses Health Studies (Ascherio, 2010).

Estos mismos autores crearon un modelo predictivo de niveles de vitamina D durante la gestación, en la cohorte del Nurses Health Studies (Mirzaei, 2011), ajustando por edad, latitud al nacimiento, radiación solar, ejercicio físico al aire libre, ingesta de vitamina D en la dieta y en suplementos vitamínicos, índice de masa corporal y consumo de tabaco, confirmando que niveles más altos de vitamina D, se asociaban con menor riesgo de E.M.

Este estudio mereció un editorial en el Neurology, para interpretar estos resultados con cautela, dado que si cada vaso de leche sólo aporta 240 UI de vitamina D, y las necesidades diarias, se sabe ahora que han de ser mayores de 1000 UI/día (Mirzaei, 2011), es difícil explicar este beneficio, única y exclusivamente, por la ingesta de 3 vasos de leche/día (Cutter, 2011).

La dieta también puede explicar las variaciones en la prevalencia de la enfermedad, en los países nórdicos. El norte de Noruega tendría que tener la incidencia de E.M. más alta que en Escocia e Inglaterra, por su latitud, pero incluso en el norte costero es la mitad que en las zonas del interior (Kampman, 2007), tal vez debido al consumo de pescado azul, como puede también ocurrir en la costa atlántica de Francia, donde es menor que en zonas con igual radiación solar de Francia.

En los últimos años, se ha encontrado un efecto protector del café en enfermedades neurodegenerativas como es la Enfermedad de Parkinson (Checkoway 2002). En mayo del 2012, el grupo de Ascherio (Massa, 2012), no ha encontrado
asociación entre el consumo de café y alcohol y el riesgo de E.M., en la cohorte del Nurses´ Health Study.

También se cree que los niveles de vitamina D, pueden actuar como un factor de protección frente a las infecciones respiratorias, sobre todo la infección por el virus de Epstein-Barr, a través de la síntesis de catelicidina humana (IL-37). Se ha encontrado una asociación entre los meses en que los niveles de vitamina D están más bajos, como sucede en el mes de marzo, y el pico de aquellas enfermedades relacionadas con el VEB, como el linfoma de Hodgkin y la mononucleosis infecciosa (Grant, 2010).

Nuestro estudio es el primero en población española, donde se han evaluado la ingesta de alimentos ricos en vitamina D en la infancia y adolescencia, para establecerlos como factores de riesgo o protección frente a la enfermedad. Los estudios previos realizados caso-control, sobre factores ambientales relacionados con la enfermedad, establecieron que el contacto con perros y ovejas, antes de los 15 años, eran factores de riesgo para desarrollar la enfermedad, en la comarca de Alcoy (Alicante) (Frutos-Alegría, 2002).

1.7 Genética y vitamina D

La E.M es una enfermedad autoinmune con cierto componente genético. Ya hemos comentado cómo la prevalencia varía según la raza. Hay una concordancia entre gemelos monocigóticos del 20-30% y en familiares de primer grado del 1-5%. Las variaciones genéticas en los receptores de la vitamina D, y de otros genes, pueden influir en los efectos de la vitamina D sobre el sistema inmunitario.

El incremento de la frecuencia en los gemelos monocigóticos y dicigóticos según la latitud, indica un aumento del efecto genético con concentraciones bajas de vitamina D. A su vez, las variaciones de la tasa de vitamina D dependen de factores genéticos, como los polimorfismos en el grupo de las proteínas transportadoras de la vitamina D.

Se han estudiado los polimorfismos IL-10, SPP1, los VDR (receptores de la vitamina D), NOD2, CYP27B1, sin encontrar una relación estadísticamente significativa (Torrey, 1997; Simon, 2010; Handunnetthi, 2010).

Lo que sí se ha encontrado es una asociación de algunos polimorfismos con determinados factores ambientales, como el polimorfismo del VDR Folk1 y los niveles de vitamina D de la dieta, o entre polimorfismos del VDR CDX23 ó MC1R y la exposición solar. Esta relación es crucial a la hora de valorar el riesgo de E.M., asociado a determinados polimorfismos y a los factores ambientales (Ascherio, 2010).
1. INTRODUCCIÓN.

Otro hallazgo que relacionan la genética de la E.M. y la vitamina D, es que el Genoma-Wide Association Study identifica el riesgo de E.M., en variantes próximas al gen de la 1-α-hidroxilasa (De Jager, 2009). Se han descrito casos de E.M. asociados al raquitismo vitamina D-dependiente de tipo I (mutación del gen de la 1-α-hidroxilasa) (Torkildsen, 2008).

Lo que parece claro es que el haplotipo HLA-DRB1*1501, es el marcador genético que se ha asociado con un riesgo tres veces mayor de padecer E.M., en caucásicos occidentales, por lo que vamos a dedicarle más atención.

1.7.1 Vitamina D y HLA-DRB1

La vitamina D puede alterar la expresión y presentación de antígenos del HLA-DR. Los efectos biológicos de la vitamina D dependen de los receptores de la vitamina D (VDR). Estos receptores modifican la transcripción de los genes respondedores de la vitamina D, transportando en el genoma los elementos respondedores de la vitamina D (VDRE). Ramagopalan y colaboradores (2009b) estudiaron loci de susceptibilidad en E.M. para los VDRE, para ver si podrían ser regulados por la vitamina D. De esta forma, se identificó un único VDRE en la región promotora de HLA-DRB1. Este VDRE estaba muy conservado, al no haber mutaciones en los 600 genes que lo componen, en el haplotipo que se relaciona más con la E.M. (HLA-DRB1*15), pero no lo estaba entre los haplotipos no relacionados con la E.M. Ensayos funcionales demostraron que este VDRE influiría en la expresión genética, por lo que el HLA-DRB1*15 sería sensible a la vitamina D. El VDRE, que se encuentra proximal al haplotipo HLA-DRB1, permite la respuesta a la vitamina D. A nivel molecular, el compuesto 1-25(0H)\(_2\) D-VDR/RXR se trasloca al núcleo donde se une al VDRE. El reclutamiento de TFIIB, Pol II, factor regulador X (RFX), la proteína que se une al AMP cíclico (CREB), el factor de transcripción nuclear Y (NF-Y) a las secuencias S, X, X2 e Y localizadas en la región proximal del promotor, recluta al transactivador maestro regulador clase II (CIITA), que dirige la transcripción de los genes del complejo mayor de histocompatibilidad (HLA II) (Fig.9).

Las variantes de VDRE que se encontraban en otros haplotipos HLA-DRB1, no asociados a la E.M., no respondieron a la vitamina D. Los haplotipos HLA-DRB1*04, 07 y 09, que no están asociados a la E.M., produjeron unos VDRE no funcionantes.
1. INTRODUCCIÓN.

Por todo lo anterior se ha establecido una hipótesis por la cual, el déficit de vitamina D en la infancia, alteraría la expresión de HLA-DRB1 en el timo, con una pérdida de tolerancia en el timo y el aumento de autoinmunidad en etapas posteriores (Ramagopalan, 2009c; Handunnetthi, 2010).

El HLA-DRB1*15 es más frecuente en mujeres afectas de E.M. que en hombres, lo que apoyaría el hecho de que los niveles elevados de vitamina D, se asocian con baja frecuencia de E.M., sobre todo en mujeres (Kragt, 2009).

También es mayor la frecuencia de E.M. asociada a HLA-DRB1*15 entre la raza caucásica, que entre africanos y asiáticos, lo que explicaría que éstos últimos tengan menor prevalencia en climas con menor radiación solar, a pesar del mayor déficit de vitamina D que tendrían, por tener mayor cantidad de melanina en la piel.

Parece ser que el descenso de los niveles de la vitamina D en la población general, por los cambios de hábitos: uso de protectores solares, obesidad y menor actividad al aire libre, han aumentado la frecuencia de HLA-DRB1*15 en la E.M. (Yetley, 2008).

El momento en que esta interacción genético-ambiental tiene lugar también es crucial. Recientemente se ha sabido (Ramagopalan, 2009a), que hay una asociación

![Fig. 9.- Metabolismo de la vitamina D y unión al receptor VDRE en el HLA-DRB15.](image-url)
entre el mes de nacimiento, el genotipo HLA-DRB1 y el riesgo de E.M. En un estudio con 4.834 pacientes con E.M., 4.056 controles y parientes no afectos de Canadá, Suecia y Noruega, se realizó el genotipado para el gen del HLA-DRB1. Los pacientes con E.M. portadores del HLA-DRB1*15 habían nacido más en Abril (p=0.004), comparados con los pacientes que no portaban HLA-DRB1*15. Menos pacientes con E.M. portadores del HLA-DRB1*15 habían nacido en noviembre, comparados con los pacientes no portadores. Estas diferencias no se observaron en controles o familiares no afectos (Fig.10).

![Fig.10. Ratio de HLA-DRB1*15 positivos frente a HLA-DRB1*15 negativos, según el mes de nacimiento de pacientes con E.M. (Ramagopalan, 2009a).](image)

Esto apoya la teoría de que debe haber una interacción entre un factor de riesgo estacional con un locus cercano al HLA-DRB1*15, durante la gestación o cerca del postparto.

Los estudios de la Asociación Genoma-Wide sólo explican el 50% del riesgo de herencia de E.M. El diplotipo, o la combinación de los dos haplotipos parenterales es lo que determina el riesgo individual de E.M. El riesgo de E.M. viene determinado por la epistasis de los haplotipos en el HLA (interacción entre los haplotipos del sujeto) y por la epigenética (interacción entre los haplotipos paternos y maternos) en el HLA. El estudio canadiense (Ramagopalan, 2009a) descubrió una interacción epistática entre los haplotipos del HLA-DRB1. El HLA-DRB1*08 incrementa el riesgo de E.M. el doble, cuando se asocia con el HLA-DRB1*15 y el HLA-DRB1*01 y *10 protegen de E.M., pero...
sólo en presencia de HLA-DRB1*15 (Ramagopalan, 2007). Un estudio sueco sugiere que HLA-DRB1*01 puede ser protector por sí mismo (Brynedal, 2007).

En cuanto a la epigenética, una herencia con origen materno ha sido observada en E.M., por los estudios de hermanos de distintos padres (Ebers, 2004), el estudio danés (Hoppenbrouwers, 2008) y las parejas avunculares (Herrera, 2008).

En el estudio canadiense, se trasmitía más HLA-DRB1*15 de madres que de padres (Ramagopalan, 2008). En Cerdeña, se trasmite más de los padres el HLA-DRB1*17 (Marrosu, 2004). Un estudio con parejas avunculares, demostró que la frecuencia de HLA-DRB1*15 era más baja en la primera generación de mujeres afectas, comparada con la segunda generación de mujeres afectas, donde la frecuencia de HLA-DRB1*15 permanece sin cambios en hombres afectos. Esta observación demuestra que el HLA está implicado en el incremento de la incidencia de E.M. en mujeres, y que el HLA parece ser el lugar de la interacción gen-ambiental (Chao, 2009).

Un estudio reciente realizado en una cohorte de pacientes españoles con E.M., ha encontrado que el HLA-DRB15*01 si está asociado con la E.M., comparado con controles sanos no relacionados, y que el HLA-DRB15*01 y 04, están relacionados con peor pronóstico en la progresión de la discapacidad (Fig.11) (Romero-Pinel, 2011).

![Fig.11.- El 25% de los pacientes HLA-DRB1*01 positivos alcanzaban un grado de discapacidad de 6 en la EDSS en 15,37 años, frente a 30,95 años en el resto. El 25% de los HLA-DRB1*04 positivos alcanzaban un EDSS de 6 a los 17,58 años, y el resto a los 26,03 años (Romero-Pinel, 2011).](image-url)
1. INTRODUCCIÓN.

Un estudio de DeLuca y colaboradores (2007) compara el genotipo HLA-DRB1 de los pacientes canadienses y corsos, afectados de forma benigna y maligna. Definen benignos a aquellos que a los 20 años de inicio de la enfermedad tienen un EDSS<3, y malignos, a los que tienen EDSS>6 a los 5 años de aparición de la enfermedad. El HLA-DRB1*01 parecía menos en pacientes malignos que en pacientes benignos, significativamente, como resultado de una interacción epistática con el HLA-DRB1*01. Este alelo parece atenuea la progresión de la discapacidad que caracteriza a esta enfermedad a largo plazo (DeLuca, 2007).
1.8 Resumen de las evidencias de la relación de la vitamina D con la E.M.

Se resumen a continuación, en una tabla, todas las evidencias que relacionan a la vitamina D con la E.M. (Tabla 1).

<table>
<thead>
<tr>
<th>MECANISMOS</th>
<th>EVIDENCIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitud y migraciones</td>
<td>La incidencia de la E.M. aumenta con la latitud (mayor al norte del paralelo 40 en hemisferio norte y al sur del paralelo 40 en hemisferio sur). Los emigrantes británicos a Australia y Sudáfrica, adquieren la prevalencia del país, si emigran antes de los 15 años. Los ratios de concordancia entre los gemelos con E.M. varían con la latitud del nacimiento.</td>
</tr>
<tr>
<td>Exposición solar</td>
<td>Es menor la prevalencia de E.M. a mayor exposición solar anual, radiación UV ambiental y radiación solar diaria en diciembre en el lugar de nacimiento. Las actividades al aire libre y vivir en un área de alta exposición solar, disminuyen el riesgo de E.M. Las actividades al aire libre en la infancia están asociadas con bajo riesgo de E.M.</td>
</tr>
<tr>
<td>Niveles vitamina D</td>
<td>Los suplementos de vitamina D están inversamente relacionados con el riesgo de E.M. Niveles altos de vitamina D circulante, previo a la enfermedad, están asociados con un bajo riesgo de E.M. Bajos niveles de vitamina D están asociados con un riesgo aumentado de E.M., mayor tasa de brotes y mayor discapacidad.</td>
</tr>
<tr>
<td>Mecanismos genéticos</td>
<td>Variantes genéticas en los genes del receptor de la vitamina D están asociados con la E.M. Se han descrito casos de E.M. asociados al raquitismo vitamina D-dependiente de tipo I (mutación del gen de la 1-α-hidroxilasa). Se ha hallado un déficit de proteínas trasportadoras de vitamina D, en muestras de LCR de pacientes con E.M., en comparación con controles. La vitamina D regula el HLA-DRB1*1501, que es el alelo principal del HLA relacionado con la E.M. El Genoma-Wide Association Study identifica el riesgo de E.M. en variantes próximas al gen de la 1-α-hidroxilasa.</td>
</tr>
</tbody>
</table>
1. INTRODUCCIÓN.

MECANISMOS

<table>
<thead>
<tr>
<th>Gestación y estación del año</th>
<th>EVIDENCIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remisiones clínicas de la E.M. en la gestación han coincidido con aumentos de niveles de vitamina D.</td>
<td></td>
</tr>
<tr>
<td>Las personas nacidas en el mes de mayo o finales del invierno tienen más riesgo de padecer E.M. que las nacidas en noviembre.</td>
<td></td>
</tr>
<tr>
<td>La diabetes materna y la obesidad durante la gestación (déficit de vitamina D) se asocia a mayor riesgo de E.M.</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 1.-Resumen de las evidencias de la relación de la vitamina D con la E.M.

A continuación se resumen los periodos en los que la vitamina D puede actuar (Tabla 2).

1.9 Resumen de los periodos donde la vitamina D puede actuar

<table>
<thead>
<tr>
<th>PERIODO</th>
<th>EVIDENCIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestación</td>
<td>Mayor riesgo en gemelos dicigóticos vs. familiares de primer grado como efecto materno (factores intrauterinos).</td>
</tr>
<tr>
<td></td>
<td>La diabetes y la obesidad materna (déficit de vitamina D) se asocia a mayor riesgo de E.M.</td>
</tr>
<tr>
<td></td>
<td>Las personas nacidas en el mes de mayo o finales del invierno tienen más riesgo de padecer E.M. que las nacidas en noviembre, por déficit materno de vitamina D durante la gestación.</td>
</tr>
<tr>
<td></td>
<td>El sistema nervioso tiene aquí su máximo desarrollo y el déficit de vitamina D altera la expresión de los genes que codifican las mitocondrias y las proteínas sinápticas en el cerebro adulto de la rata.</td>
</tr>
<tr>
<td>Infancia y adolescencia</td>
<td>Los emigrantes de Norte de Europa a Sudáfrica tienen menor riesgo de E.M., si lo hacen antes de los 15 años.</td>
</tr>
<tr>
<td></td>
<td>La baja exposición solar y los bajos niveles de vitamina D durante la adolescencia aumentan el riesgo de E.M.</td>
</tr>
<tr>
<td></td>
<td>En este periodo se desarrolla el timo. Un reducción de la expresión general de HLA-DRB1*15 por la falta de vitamina D en el timo en la infancia ocasiona una pérdida de la tolerancia central, originando autoinmunidad en etapas posteriores.</td>
</tr>
<tr>
<td>Adulto</td>
<td>Los estudios de migración australiana sugieren que el riesgo puede ser alterado hasta la madurez. El trabajo al aire libre y residir en áreas con mucha radiación solar están asociados con bajo riesgo de E.M.</td>
</tr>
</tbody>
</table>
1. INTRODUCCIÓN.

<table>
<thead>
<tr>
<th>PERIODO</th>
<th>EVIDENCIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adulto</td>
<td>Tras el debut de la enfermedad, los niveles de vitamina D son más bajos durante los brotes que en las remisiones.</td>
</tr>
<tr>
<td></td>
<td>La capacidad de las células T reguladoras de suprimir la proliferación de las células T en E.M., depende de los niveles de vitamina D, por lo que el papel de la vitamina D se mantiene tras el diagnóstico.</td>
</tr>
</tbody>
</table>

Taba 2.: Resumen de los periodos en los que la vitamina D puede actuar.

En conclusión, el mes de nacimiento del paciente con E.M. ha sido estudiado como indicador de una posible exposición perinatal, como es la radiación solar en el riesgo de desarrollar E.M. Los niveles de vitamina D durante el embarazo también se han relacionado con el riesgo del desarrollo de la E.M. La exposición materna a la radiación ultravioleta en la gestación, puede ser usada como una variable para conocer el estado de la vitamina D durante la gestación. Se conoce que en el hemisferio norte hay más casos de pacientes con E.M. nacidos en Mayo, y menos en los nacidos en Noviembre (al contrario que en Australia), y que este patrón se relaciona con la exposición materna a la radiación ultravioleta ambiental, en el primer trimestre de la gestación, ajustado por mes de nacimiento o lugar del mismo.

En nuestro trabajo, se quiere determinar si el riesgo de padecer E.M. está relacionado con el mes de nacimiento en nuestro país y estudiar las diferencias en el mes de nacimiento, según las diferentes latitudes.

Asimismo, se ha querido ver si las variaciones de determinados hábitos, y dieta rica en vitamina D, durante la primera infancia y adolescencia, en pacientes comparados con controles sanos, son factores ambientales que contribuyen al riesgo a desarrollar E.M. en nuestro medio, ya que sabemos por los estudios epidemiológicos, que el déficit de vitamina D en el periodo de la infancia y adolescencia es crucial en el riesgo de desarrollar E.M.

Sabemos que la vitamina D interacciona con el locus mayor de histocompatibilidad que determina susceptibilidad a E.M (HLA-DRB1*1501), y que los pacientes con E.M. portadores del HLA-DRB1*15 habían nacido más en Abril (p=0.004), comparados con los pacientes que no portaban HLA-DRB1*15, en Canadá, Suecia y Noruega; por lo que queremos saber si el mes de nacimiento, como indicador de déficit de vitamina D, está relacionado con ser portador de dicho locus.
2. HIPÓTESIS y OBJETIVOS
2. HIPÓTESIS Y OBJETIVOS

Como consecuencia de los datos que se han desarrollado en la introducción, podemos formular la hipótesis de que debe haber una interacción entre un factor de riesgo estacional con un locus cercano al HLA-DRB1*15, durante la gestación o cerca del postparto.

El mes de nacimiento puede ser un indicador del déficit de vitamina D materno, como factor de riesgo en el desarrollo de E.M. en la descendencia. Asimismo, sabemos por los estudios epidemiológicos, que el déficit de vitamina D en el período de la infancia y adolescencia, es crucial en el riesgo de desarrollar E.M.

Como también sabemos que la vitamina D interacciona con el locus mayor de histocompatibilidad, que determina susceptibilidad a E.M (HLA-DRB1*1501), queremos investigar si el mes de nacimiento, como indicador de déficit de vitamina D, está relacionado con ser portador de dicho locus.

Para poder demostrarlo nos hemos planteado los siguientes objetivos:

2.1 Objetivos

1.- Investigar el mes del nacimiento de los pacientes con Esclerosis Múltiple.

2.- Investigar si las diferencias ambientales son modificadas por hábitos de vida y alimentación, en los pacientes hasta los 20 años y en sus madres, hasta la gestación de los mismos.

3.- Investigar si existe una asociación entre el mes de nacimiento y la presencia de HLA-DRB1*15.
3. PACIENTES, MATERIALES Y MÉTODOS.
3. PACIENTES, MATERIALES Y MÉTODOS.

Para poder comprobar nuestra hipótesis y realizar los objetivos de este trabajo, hemos planteado los siguientes métodos. Inicialmente necesitamos saber si existe una mayor predisposición de los pacientes con E.M., en el nacimiento en una determinada época del año, en relación con el déficit de vitamina D gestacional. Una vez determinada si existe o no esa tendencia, confirmar si los hábitos dietéticos en la infancia y adolescencia son factores de riesgo para el desarrollo de la misma, en la misma relación sobre la posible influencia de los niveles de vitamina D en dicha etapa. Una vez estudiada esa relación, intentar encontrar un nexo de relación en la interacción genético-ambiental, investigando si existe relación entre el mes de nacimiento y la presencia o no de HLA-DRB1*15.

3.1 Diseño del estudio: pacientes y criterios de inclusión y exclusión

El diseño del estudio es observacional y retrospectivo. El periodo de recogida de datos abarca desde el 22 de enero de 2010 hasta el 30 de septiembre de 2011.

Pacientes para el estudio del mes de nacimiento.

Para el estudio del mes de nacimiento, se obtuvieron los datos de fechas de nacimiento de 4.886 pacientes con E.M., procedentes de 11 hospitales de España, que constan en las Bases de Datos de las consultas especializadas y Unidades de Enfermedades Desmielinizantes, de dichos centros.

Los criterios de inclusión de los pacientes son:

- Pacientes mayores de edad diagnosticados de E.M., según los criterios de Poser (Anexo I).
- No se obtuvieron datos clínicos.

La distribución de los pacientes por centros es la siguiente:

- 2.230 eran de Madrid (40º 20N de latitud), procedentes de las Bases de Datos de las consultas de E.M. de los Hospitales Universitarios Príncipe de Asturias de Alcalá de Henares, Hospital Universitario Gregorio Marañón, H. Universitario de Leganés, H. Universitario de La Paz, H. Universitario Ramón y Cajal, H. Universitario Gregorio Marañón y Hospital Universitario 12 de Octubre. Los pacientes incluidos en esas bases habían sido diagnosticados de E.M. por los criterios de Poser (Anexo I) y las muestras eran homogéneas y similares en cuanto a frecuencias de edades, sexo y tipos de
enfermedad. Las variables que nos aportaron eran demográficas: fecha de nacimiento y sexo, no recibiendo datos de otro tipo, en virtud de la Ley de Protección de Datos.

- 212 pacientes eran de Vigo (Pontevedra) (44º 15N de latitud). Los pacientes incluidos en esta base pertenecían al Complejo Hospitalario Universitario de Vigo y habían sido diagnosticados de E.M. por los criterios de Poser (Anexo I). Las variables que nos aportaron eran demográficas: fecha de nacimiento y sexo, no recibiendo datos de otro tipo, en virtud de la Ley de Protección de Datos.

- 1.157 pacientes de Málaga (36º 43N de latitud). Los pacientes incluidos en esta base pertenecían al Hospital Regional Carlos Haya de Málaga y habían sido diagnosticados de E.M. por los criterios de Poser (Anexo I). Las variables que nos aportaron eran demográficas: fecha de nacimiento y sexo, no recibiendo datos de otro tipo, en virtud de la Ley de Protección de Datos. Se descartaron los datos de 23 pacientes que, al desconocerse la fecha de nacimiento, aparecían por defecto en la Base de Datos con la fecha de nacimiento de 15/enero. Revisaron en el Hospital Regional Carlos Haya de Málaga la base y nos entregaron datos nuevos.

- 623 pacientes de Donostia-San Sebastián (43º 19N de latitud). Los pacientes incluidos en esta base pertenecían al Hospital de Donostia-San Sebastián y habían sido diagnosticados de E.M. por los criterios de Poser (Anexo I). Las variables que nos aportaron eran demográficas: fecha de nacimiento y sexo, no recibiendo datos de otro tipo, en virtud de la Ley de Protección de Datos. Se descartaron los datos de 12 pacientes que, al desconocerse la fecha de nacimiento, aparecían por defecto en la Base de Datos con la fecha de nacimiento de 1/enero. Revisaron en el Hospital de Donostia la base y nos entregaron datos nuevos.

- 390 pacientes de Terrasa (Barcelona) (41º 33N de latitud). Los pacientes incluidos en esta base pertenecían al Hospital Mutua de Terrasa y habían sido diagnosticados de E.M. por los criterios de Poser (Anexo I). Las variables que nos aportaron eran demográficas: fecha de nacimiento y sexo, no recibiendo datos de otro tipo, en virtud de la Ley de Protección de Datos.

- 274 pacientes de las Islas Canarias (28º 15N de latitud). Los pacientes incluidos en esta base pertenecían al Hospital Insular de Gran Canaria y el Hospital Universitario de Tenerife y habían sido diagnosticados de E.M. por los criterios de Poser (Anexo I). Las variables que nos aportaron eran demográficas: fecha de nacimiento y sexo, no recibiendo datos de otro tipo, en virtud de la Ley de Protección de Datos.
descartaron los datos de 14 pacientes que, al desconocerse la fecha de nacimiento, aparecían por defecto en la Base de Datos con la fecha de nacimiento de 1/enero.

![Mapa geográfico de España.](image)

Se compararon los meses de nacimiento de la muestra de pacientes con los nacimientos mensuales locales en los mismos periodos (Instituto Nacional de Estadística). Estos datos son de acceso libre a través de la página web del Instituto Nacional de Estadística. Se pidió ayuda al Servicio de Epidemiología del H. Carlos III de Madrid (Dr. Jesús de Pedro), para el manejo de los datos.

Pacientes y controles sanos para el estudio de hábitos dietéticos.

Para el cálculo de la ingesta de vitamina D, se obtuvieron los datos de 491 pacientes con E.M., de la Base de Datos de la consulta de Enfermedades Desmielinizantes del Hospital Universitario 12 de Octubre de Madrid. Este estudio fue aprobado por el Comité Ético local Los pacientes cumplían los criterios de inclusión y firmaron el consentimiento informado (C.I.) (Anexo II).

También se obtuvieron los datos de 491 controles sanos, que acudían como acompañantes de pacientes en las salas de espera del hospital y centros ambulatorios, de la misma área sanitaria, y se parearon por edad y sexo. No eran familiares de primer
grado de los pacientes. Fueron informados verbalmente y aceptaron realizar los cuestionarios, que eran anónimos. Se entregaron las encuestas (Anexo III) a 523 acompañantes sanos, pero hubo que rechazar 22 controles sanos por falta de datos y otros 10 controles sanos, que se obtuvieron en exceso y con falta de paridad por edad y sexo. Estos últimos fueron extraídas aleatoriamente por el programa estadístico SPSS.

Pacientes y controles sanos para el estudio del mes de nacimiento y HLA-DRB1.

Los pacientes que formaron parte del estudio del mes de nacimiento y HLA-DRB1, fueron reclutados entre los meses de enero a marzo de 2010, de los pacientes que acudían a la consulta en el Hospital Universitario 12 de Octubre, sucesivamente. De ellos, 102 pacientes firmaron el CI (Anexo IV) y acudieron a realizarse las extracciones sanguíneas. Se perdieron 2 muestras por ruptura de los tubos de las muestras en el congelador. Este estudio fue aprobado por el Comité Ético local.

En un segundo tiempo y para aumentar el tamaño de la muestra, se unieron los resultados de nuestros 100 pacientes, a los resultados de 226 pacientes con E.M., procedentes de la Unidad de Enfermedades Desmielinizantes del Hospital Regional Universitario Carlos Haya de Málaga. Este estudio fue aprobado por el Comité Ético local. Los pacientes habían firmado el correspondiente C.I. en su centro. De esta forma, se obtuvo el genotipo de 326 pacientes con E.M. y 350 controles sanos, procedentes del Hospital Universitario 12 de Octubre, ajustados por edad y sexo.

El genotipado de los 100 pacientes con E.M de nuestro centro, se realizó mediante Dot Blot Reverso, gracias a membranas donde hay bandas de oligonucleótidos específicos para ciertas secuencias del DRB1 y que, al hibridar con nuestro producto de PCR, nos dan un patrón específico para cada alelo, leído mediante escaner e interpretado por el software. El instrumental que usamos para el tipaje por Dot Blot Reverso es el INNO-LiPA (Innogenetics®).

Nuestra población de sanos procede de la población que tenemos tipada de la lista de espera de trasplante renal (son los posibles receptores de trasplante renal).

Se compararon los diferentes genotipos (entendiendo como tal los dos alelos HLA-DRB1 parentales) y las frecuencias alélicas de nuestra cohorte con EM (n=326) y la de los controles sanos (n=350). Seguidamente, se correlacionaron los diferentes genotipos (portadores o no de HLA-DRB1*15) con la Expanded Disability Status Scale (EDSS), la media del tiempo de evolución de la enfermedad, la edad de inicio y el sexo del paciente. Posteriormente comparamos el mes de nacimiento de los pacientes con
E.M., portadores y no portadores de HLA-DRB1*15, con los controles sanos portadores y no portadores de HLA-DRB1*15.

3.2 **Recogida de datos: elaboración de las bases de datos**

Las bases de datos se elaboraron en Excel y se recogieron las siguientes variables para cada paciente:

3.2.1 *Estudio del mes de nacimiento.*

Número de historia del archivo del hospital.

Fecha de nacimiento.

Sexo, codificado como varón y mujer.

3.2.2 *Estudio de hábitos alimentarios y de vida.*

Ver Anexo III con los cuestionarios que entregamos a los pacientes y controles sanos. Se crearon las bases de datos en Excel y para su manejo y visualización, posteriormente en Acces.

En la Base de Datos de los pacientes se recogieron los siguientes datos:

- Número de historia del archivo del hospital.
- Fecha de nacimiento.
- Sexo, codificado como varón y mujer.
- Tipo de enfermedad, codificado como SCA; EMRR, Esclerosis Múltiple Secundaria Progresiva (EMSP) con y sin reagudizaciones y Esclerosis Múltiple Primaria Progresiva (EMPP).
- Edad de inicio de la enfermedad.
- Expanded Disability Status Scale (EDSS) al inicio de la enfermedad, variable numérica de 0 a 9.
- Expanded Disability Status Scale (EDSS) en el momento de la recogida de datos, variable numérica de 0 a 9.

Las principales variables que recogimos de las encuestas anteriormente citadas fueron:

- Variables demográficas y del tipo de enfermedad, mes de nacimiento del paciente, edad al inicio de la enfermedad y nivel en la Expanded Disability Status Scale (E.D.S.S.), al inicio de la enfermedad.
3. PACIENTES, MATERIALES Y MÉTODOS

- Cálculo de la vitamina D en la dieta:
 - Cálculo de la ingesta de vitamina D en alimentos (leche entera, huevos, embutidos y pescado) según porciones y frecuencia, calculando la suma total y parcial de vasos de leche diarios, en el paciente hasta los 20 años y su madre.
 - Cálculo de suplementos vitamínicos de vitamina D diarios, durante gestación (0, <400 UI, >400 UI, 400 UI). La cantidad que suelen tener los suplementos vitamínicos es de 400 UI.
 - Cálculo de suplementos vitamínicos de vitamina D diarios, durante la infancia y adolescencia (0, <400 UI, >400 UI, 400 UI). La cantidad que suelen tener los suplementos vitamínicos es de 400 UI.

- Vacunación (calendario obligatorio) en la infancia. Las variables eran: si/no.
- Lactancia materna. Las variables eran: si/no,
- Hábito tabáquico en el paciente, familia y madre del paciente. Las variables eran: si/no y cantidad de cigarrillos/día.
- Consumo de café antes de los 20 años de edad. Las variables eran: si/no.

3.2.3 Estudio del mes de nacimiento y HLA-DRB1*15.

Las variables que recogimos en la base de datos fueron:
- Número de historia del archivo del hospital.
- Fecha de nacimiento.
- Sexo, codificado como varón y mujer.
- Tipo de enfermedad, codificado como SCA; EMRR, EMSP con y sin reagudizaciones y EMPP.
- Edad de inicio de la enfermedad.
- E.D.S.S. al inicio de la enfermedad, variable numérica de 0 a 9.
- E.D.S.S. en el momento de la recogida de datos, variable numérica de 0 a 9.
- Tipaje de HLA-DRB1 y subtipos, que son sucesivamente HLA-DRB1*1501, HLA-DRB1*1502, HLA-DRB1*1503, HLA-DRB1*1504 hasta HLA-DRB1*1516.

Los datos recogidos de los controles fueron:
- Número de historia del archivo del hospital.
3. PACIENTES, MATERIALES Y MÉTODOS

- Fecha de nacimiento.
- Sexo, codificado como varón y mujer.
- Tipaje de HLA-DRB1 y subtipos, que son sucesivamente HLA-DRB1*01, HLA-DRB1*02, HLA-DRB1*03, HLA-DRB1*04 hasta HLA-DRB1*16.

3.3 Análisis estadístico

El estudio y el tratamiento estadístico de los datos se realizó con el programa SPSS. Se realizaron análisis de asociación entre las variables analíticas obtenidas en los estudios básicos, y las variables clínicas obtenidas en el estudio clínico.

Las variables cualitativas se describieron con su distribución de frecuencias y se compararon con la prueba de Chi-cuadrado de Pearson. Las variables cuantitativas se describieron con la media, la desviación estándar y los intervalos de confianza del 95%, y se compararon con la prueba t de Student cuando seguían leyes normales. Cuando no sigan leyes normales, se compararon con una prueba no paramétrica como la U de Mann-Whitney, y se describieron con la mediana y los percentiles 25 y 75. Cuando se estudiaron variables cuantitativas en más de 2 grupos se analizaron con el estudio de la varianza (ANOVA) o Kruskal-Wallis.

Para el estudio de los factores de riesgo o protección para desarrollar E.M. se utilizaron regresiones logísticas. En este modelo de regresión se han incluido los factores significativos que aportan riesgo o protección a la Esclerosis Múltiple. El riesgo de padecer la enfermedad en presencia del factor, es el Riesgo Relativo (RR). El RR>1 es un factor de riesgo, y un RR<1 es un factor protector.

En los factores o variables incluidos con más de 2 categorías, una de ellas es la que se utiliza como referencia (lo que representaría un valor de RR=1), y el resto de las categorías tienen un RR determinado, comparado con la categoría de referencia. Este modelo clasifica correctamente al 65,9% de la muestra. El 69,1% de los pacientes, y el 62,7% de los controles quedan correctamente clasificados mediante el modelo.

El test de asociación entre el mes de nacimiento y la frecuencia de HLA-DRB1*15, se realizó comparando la frecuencia de alelos en cada mes contra la frecuencia de alelos en todos los otros meses, usando un test de independencia χ^2 2 x 2.

Para todos los test estadísticos utilizados, el nivel de confianza fue del 95%.
4. RESULTADOS.
4. RESULTADOS.

Con los pacientes, material y métodos referidos hemos obtenidos los siguientes resultados:

4.1 Resultados del objetivo del mes de nacimiento de E.M. en España.

Para el estudio del mes de nacimiento de los pacientes con E.M. comparados con la población general en los mismos periodos y lugares, se calculó entre que periodos de años habían nacido el 90% de los pacientes de cada localidad.

Se compararon los meses de nacimiento de la muestra de pacientes con los nacimientos mensuales locales en los mismos periodos calculados, utilizando los datos de libre acceso del Instituto Nacional de Estadística (INE), a través de su página web.

Estudio de la muestra de Madrid. Nacimientos en la población de Madrid entre 1948-1984, según datos obtenidos del INE.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Nacimientos Nacional</th>
<th>% nacimientos nacional</th>
<th>EM</th>
<th>EM % Nacimientos</th>
</tr>
</thead>
<tbody>
<tr>
<td>diciembre</td>
<td>191860</td>
<td>7,9</td>
<td>170</td>
<td>7,6</td>
</tr>
<tr>
<td>noviembre</td>
<td>184201</td>
<td>7,6</td>
<td>198</td>
<td>8,9</td>
</tr>
<tr>
<td>octubre</td>
<td>198968</td>
<td>8,2</td>
<td>186</td>
<td>8,3</td>
</tr>
<tr>
<td>septiembre</td>
<td>199083</td>
<td>8,2</td>
<td>188</td>
<td>8,4</td>
</tr>
<tr>
<td>agosto</td>
<td>200162</td>
<td>8,3</td>
<td>195</td>
<td>8,7</td>
</tr>
<tr>
<td>julio</td>
<td>216383</td>
<td>9,0</td>
<td>186</td>
<td>8,3</td>
</tr>
<tr>
<td>junio</td>
<td>211089</td>
<td>8,7</td>
<td>211</td>
<td>9,5</td>
</tr>
<tr>
<td>mayo</td>
<td>221755</td>
<td>9,2</td>
<td>184</td>
<td>8,3</td>
</tr>
<tr>
<td>abril</td>
<td>205917</td>
<td>8,5</td>
<td>186</td>
<td>8,3</td>
</tr>
<tr>
<td>marzo</td>
<td>206562</td>
<td>8,5</td>
<td>187</td>
<td>8,4</td>
</tr>
<tr>
<td>febrero</td>
<td>185146</td>
<td>7,7</td>
<td>136</td>
<td>6,1</td>
</tr>
<tr>
<td>enero</td>
<td>195296</td>
<td>8,1</td>
<td>203</td>
<td>9,1</td>
</tr>
</tbody>
</table>

Tabla 3: Distribución de las frecuencias de nacimientos por meses de los pacientes y de la población general de Madrid (fuente: INE).
Las tablas 4 y 5 muestran que el 8.9% de los nacimientos de los pacientes con E.M. era en Noviembre, siendo mayor estadísticamente significativo, que en la población general (p=0,0255). El 6.1% de los nacimientos de los pacientes con E.M. era en Febrero, siendo menor estadísticamente significativo, que en la población general (p=0,0055).

<table>
<thead>
<tr>
<th></th>
<th>Población</th>
<th>Muestra EM Observedados</th>
<th>Chi-cuadrado</th>
<th>p valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>195296</td>
<td>203</td>
<td>3,1267</td>
<td>0,0770</td>
</tr>
<tr>
<td>Febrero</td>
<td>185146</td>
<td>136</td>
<td>7,6977</td>
<td>0,0055</td>
</tr>
<tr>
<td>Marzo</td>
<td>206562</td>
<td>187</td>
<td>0,0754</td>
<td>0,7837</td>
</tr>
<tr>
<td>Abril</td>
<td>205917</td>
<td>186</td>
<td>0,0934</td>
<td>0,7599</td>
</tr>
<tr>
<td>Mayo</td>
<td>221755</td>
<td>184</td>
<td>2,2917</td>
<td>0,1301</td>
</tr>
<tr>
<td>Junio</td>
<td>211089</td>
<td>211</td>
<td>1,4740</td>
<td>0,2247</td>
</tr>
<tr>
<td>Julio</td>
<td>216383</td>
<td>186</td>
<td>1,0299</td>
<td>0,3102</td>
</tr>
<tr>
<td>Agosto</td>
<td>200162</td>
<td>195</td>
<td>0,6232</td>
<td>0,4299</td>
</tr>
<tr>
<td>Septiembre</td>
<td>199083</td>
<td>188</td>
<td>0,1083</td>
<td>0,7420</td>
</tr>
<tr>
<td>Octubre</td>
<td>198968</td>
<td>186</td>
<td>0,0336</td>
<td>0,8545</td>
</tr>
<tr>
<td>Noviembre</td>
<td>184201</td>
<td>198</td>
<td>4,9908</td>
<td>0,0255</td>
</tr>
<tr>
<td>Diciembre</td>
<td>191860</td>
<td>170</td>
<td>0,3054</td>
<td>0,5805</td>
</tr>
</tbody>
</table>

Tabla 4.- Valores observados y esperados de la frecuencia de nacimientos en Madrid. En rojo se señala la mayor frecuencia de nacimientos de E.M. frente a la población general y en azul la menor frecuencia de nacimientos frente a la población general.

![Figura 13](image_url) **Fig.13.-Valores observados y esperados de la frecuencia de nacimientos en Madrid. En rojo se señala la frecuencia de nacimientos de E.M. y en azul la frecuencia de nacimientos de la población general.**
4. RESULTADOS.

La figura 13 muestra que, el mes de mayores nacimientos en los pacientes con E.M. en Madrid, era Noviembre, comparado con la población general y que el nacimiento en el mes de Febrero era menor en la muestra de pacientes, que en la población general. Es decir, los pacientes nacidos en Febrero, han tenido el primer trimestre de gestación en los meses de mayor radiación solar (Junio, Julio y Agosto) y nacen menos pacientes en dicho mes que en la población general. Los pacientes que nacen más en Noviembre, tienen el primer trimestre de la gestación en primavera (Marzo, Abril y Mayo).

Estudio de la muestra de Vigo.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Nacimientos Nacional</th>
<th>% nacimientos nacional</th>
<th>EM</th>
<th>EM % Nacimientos</th>
</tr>
</thead>
<tbody>
<tr>
<td>diciembre</td>
<td>47562</td>
<td>8,4</td>
<td>17</td>
<td>8,0</td>
</tr>
<tr>
<td>noviembre</td>
<td>46050</td>
<td>8,1</td>
<td>16</td>
<td>7,5</td>
</tr>
<tr>
<td>octubre</td>
<td>50552</td>
<td>8,9</td>
<td>21</td>
<td>9,9</td>
</tr>
<tr>
<td>septiembre</td>
<td>49137</td>
<td>8,6</td>
<td>17</td>
<td>8,0</td>
</tr>
<tr>
<td>agosto</td>
<td>47367</td>
<td>8,3</td>
<td>18</td>
<td>8,5</td>
</tr>
<tr>
<td>julio</td>
<td>47086</td>
<td>8,3</td>
<td>17</td>
<td>8,0</td>
</tr>
<tr>
<td>junio</td>
<td>44523</td>
<td>7,8</td>
<td>27</td>
<td>12,7</td>
</tr>
<tr>
<td>mayo</td>
<td>48375</td>
<td>8,5</td>
<td>12</td>
<td>5,7</td>
</tr>
<tr>
<td>abril</td>
<td>47901</td>
<td>8,4</td>
<td>18</td>
<td>8,5</td>
</tr>
<tr>
<td>marzo</td>
<td>47555</td>
<td>8,4</td>
<td>14</td>
<td>6,6</td>
</tr>
<tr>
<td>febrero</td>
<td>44288</td>
<td>7,8</td>
<td>14</td>
<td>6,6</td>
</tr>
<tr>
<td>enero</td>
<td>48315</td>
<td>8,5</td>
<td>21</td>
<td>9,9</td>
</tr>
<tr>
<td></td>
<td>568711</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5.-Distribución de las frecuencias de nacimientos por meses de los pacientes y de la población general de Vigo (fuente: INE).

Las tablas 5 y 6 muestran que el 12,7% de los nacimientos de los pacientes con E.M. era en Junio, siendo mayor estadísticamente significativo, que en la población general (p=0,0078).

No hay un menor número de nacimientos de los pacientes con E.M. en ningún mes.
4. RESULTADOS.

<table>
<thead>
<tr>
<th></th>
<th>Población</th>
<th>Muestra EM</th>
<th>Chi-cuadrado</th>
<th>p valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>48315</td>
<td>21</td>
<td>0,5420</td>
<td>0,4616</td>
</tr>
<tr>
<td>Febrero</td>
<td>44288</td>
<td>14</td>
<td>0,4135</td>
<td>0,5202</td>
</tr>
<tr>
<td>Marzo</td>
<td>47555</td>
<td>14</td>
<td>0,8549</td>
<td>0,3552</td>
</tr>
<tr>
<td>Abril</td>
<td>47901</td>
<td>18</td>
<td>0,0013</td>
<td>0,9716</td>
</tr>
<tr>
<td>Mayo</td>
<td>48375</td>
<td>12</td>
<td>2,2054</td>
<td>0,1375</td>
</tr>
<tr>
<td>Junio</td>
<td>44523</td>
<td>27</td>
<td>7,0704</td>
<td>0,0078</td>
</tr>
<tr>
<td>Julio</td>
<td>47086</td>
<td>17</td>
<td>0,0189</td>
<td>0,8905</td>
</tr>
<tr>
<td>Agosto</td>
<td>47367</td>
<td>18</td>
<td>0,0073</td>
<td>0,9321</td>
</tr>
<tr>
<td>Septiembre</td>
<td>49137</td>
<td>17</td>
<td>0,1036</td>
<td>0,7475</td>
</tr>
<tr>
<td>Octubre</td>
<td>50552</td>
<td>21</td>
<td>0,2705</td>
<td>0,6030</td>
</tr>
<tr>
<td>Noviembre</td>
<td>46050</td>
<td>16</td>
<td>0,0862</td>
<td>0,7691</td>
</tr>
<tr>
<td>Diciembre</td>
<td>47562</td>
<td>17</td>
<td>0,0328</td>
<td>0,8563</td>
</tr>
<tr>
<td></td>
<td>568711</td>
<td>212</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 6.- Valores observados y esperados de la frecuencia de nacimientos en Vigo. En rojo se señala la mayor frecuencia de nacimientos de E.M. frente a la población general y en azul la menor frecuencia de nacimientos frente a la población general.

Fig. 14.- Valores observados y esperados de la frecuencia de nacimientos en Vigo. En rojo se señala la frecuencia de nacimientos de E.M. y en azul la frecuencia de nacimientos de la población general.

Los resultados obtenidos en Vigo señalan que existe un mayor porcentaje de pacientes con E.M. que nacen en Junio, comparados con la población general nacida en los mismos periodos, según datos obtenidos del INE. No existe ningún mes en el que nazcan menos pacientes que la población general (Tabla 6 y Fig. 14).
Estudio de la muestra de Málaga.

Nacimientos en la población de Málaga entre 1946-1982 (fuente: INE).

<table>
<thead>
<tr>
<th>Mes</th>
<th>Nacimientos Nacional</th>
<th>% Nacimientos Nacional</th>
<th>EM</th>
<th>% EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diciembre</td>
<td>64777</td>
<td>8,6</td>
<td>97</td>
<td>8,4</td>
</tr>
<tr>
<td>Noviembre</td>
<td>60586</td>
<td>8,0</td>
<td>102</td>
<td>8,8</td>
</tr>
<tr>
<td>Octubre</td>
<td>64467</td>
<td>8,5</td>
<td>88</td>
<td>7,6</td>
</tr>
<tr>
<td>Septiembre</td>
<td>62381</td>
<td>8,3</td>
<td>101</td>
<td>8,7</td>
</tr>
<tr>
<td>Agosto</td>
<td>61998</td>
<td>8,2</td>
<td>86</td>
<td>7,4</td>
</tr>
<tr>
<td>Julio</td>
<td>61585</td>
<td>8,1</td>
<td>92</td>
<td>8,0</td>
</tr>
<tr>
<td>Junio</td>
<td>59328</td>
<td>7,9</td>
<td>107</td>
<td>9,2</td>
</tr>
<tr>
<td>Mayo</td>
<td>62643</td>
<td>8,3</td>
<td>110</td>
<td>9,5</td>
</tr>
<tr>
<td>Abril</td>
<td>62443</td>
<td>8,3</td>
<td>92</td>
<td>8,0</td>
</tr>
<tr>
<td>Marzo</td>
<td>65085</td>
<td>8,6</td>
<td>91</td>
<td>7,9</td>
</tr>
<tr>
<td>Febrero</td>
<td>61003</td>
<td>8,1</td>
<td>72</td>
<td>6,2</td>
</tr>
<tr>
<td>Enero</td>
<td>69368</td>
<td>9,2</td>
<td>119</td>
<td>10,3</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>755664</td>
<td></td>
<td>1157</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 7.-Distribución de las frecuencias de nacimientos por meses de los pacientes y de la población general de Málaga (fuente: INE).

<table>
<thead>
<tr>
<th>Mes</th>
<th>Población</th>
<th>Muestra EM Observados</th>
<th>Chi-cuadrado</th>
<th>p valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>69368</td>
<td>119</td>
<td>1,6931</td>
<td>0,1932</td>
</tr>
<tr>
<td>Febrero</td>
<td>61003</td>
<td>72</td>
<td>5,3282</td>
<td>0,0210</td>
</tr>
<tr>
<td>Marzo</td>
<td>65085</td>
<td>91</td>
<td>0,8208</td>
<td>0,3649</td>
</tr>
<tr>
<td>Abril</td>
<td>62443</td>
<td>92</td>
<td>0,1481</td>
<td>0,7004</td>
</tr>
<tr>
<td>Mayo</td>
<td>62643</td>
<td>110</td>
<td>2,2521</td>
<td>0,1334</td>
</tr>
<tr>
<td>Junio</td>
<td>59328</td>
<td>107</td>
<td>3,1153</td>
<td>0,0776</td>
</tr>
<tr>
<td>Julio</td>
<td>61585</td>
<td>92</td>
<td>0,0606</td>
<td>0,8055</td>
</tr>
<tr>
<td>Agosto</td>
<td>61998</td>
<td>86</td>
<td>0,9129</td>
<td>0,3393</td>
</tr>
<tr>
<td>Septiembre</td>
<td>62381</td>
<td>101</td>
<td>0,3432</td>
<td>0,5580</td>
</tr>
<tr>
<td>Octubre</td>
<td>64467</td>
<td>88</td>
<td>1,2677</td>
<td>0,2602</td>
</tr>
<tr>
<td>Noviembre</td>
<td>60586</td>
<td>102</td>
<td>0,9982</td>
<td>0,3177</td>
</tr>
<tr>
<td>Diciembre</td>
<td>64777</td>
<td>97</td>
<td>0,0523</td>
<td>0,8190</td>
</tr>
</tbody>
</table>

| | 755664 | 1157 |

Tabla 8.- Valores observados y esperados de la frecuencia de nacimientos en Málaga. En azul la menor frecuencia de nacimientos frente a la población general.
El 6.2% de los nacimientos de los pacientes con E.M. era en Febrero, siendo menor estadísticamente significativo, que en la población general \((p=0.0210)\). No hay un mayor número de nacimientos de los pacientes con E.M. en ningún mes (Tablas 7 y 8).

![Fig.15.-Valores observados y esperados de la frecuencia de nacimientos en Málaga. En rojo se señala la frecuencia de nacimientos de E.M. y en azul la frecuencia de nacimientos de la población general.](image)

Los resultados obtenidos en Málaga señalan que existe un menor porcentaje de pacientes con E.M. que nacen en Febrero, comparados con la población general nacida en los mismos periodos, según datos obtenidos del INE. No existe ningún mes en el que nazcan más pacientes que la población general (Tabla 8 y Fig. 15).

Estudio de la muestra de las Islas Canarias

Nacimientos en la población de las Islas Canarias entre 1941-1979

<table>
<thead>
<tr>
<th>Mes</th>
<th>Nacimientos Nacional</th>
<th>%Nacimientos Nacional</th>
<th>EM</th>
<th>% EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>diciembre</td>
<td>44314</td>
<td>8,6</td>
<td>23</td>
<td>8,0</td>
</tr>
<tr>
<td>noviembre</td>
<td>43419</td>
<td>8,4</td>
<td>32</td>
<td>11,1</td>
</tr>
<tr>
<td>octubre</td>
<td>45365</td>
<td>8,8</td>
<td>20</td>
<td>6,9</td>
</tr>
<tr>
<td>septiembre</td>
<td>43831</td>
<td>8,5</td>
<td>17</td>
<td>5,9</td>
</tr>
<tr>
<td>agosto</td>
<td>41930</td>
<td>8,1</td>
<td>29</td>
<td>10,0</td>
</tr>
<tr>
<td>julio</td>
<td>43017</td>
<td>8,3</td>
<td>17</td>
<td>5,9</td>
</tr>
<tr>
<td>junio</td>
<td>41264</td>
<td>8,0</td>
<td>18</td>
<td>6,2</td>
</tr>
<tr>
<td>mayo</td>
<td>44738</td>
<td>8,6</td>
<td>31</td>
<td>10,7</td>
</tr>
<tr>
<td>abril</td>
<td>43230</td>
<td>8,3</td>
<td>30</td>
<td>10,4</td>
</tr>
<tr>
<td>marzo</td>
<td>43901</td>
<td>8,5</td>
<td>23</td>
<td>8,0</td>
</tr>
<tr>
<td>febrero</td>
<td>39926</td>
<td>7,7</td>
<td>26</td>
<td>9,0</td>
</tr>
<tr>
<td>enero</td>
<td>43101</td>
<td>8,3</td>
<td>23</td>
<td>8,0</td>
</tr>
<tr>
<td></td>
<td>518036</td>
<td>289</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. RESULTADOS.

Tabla 9.- Distribución de las frecuencias de nacimientos por meses de los pacientes y de la población general de las Islas Canarias (fuente: INE).

<table>
<thead>
<tr>
<th></th>
<th>Población</th>
<th>Muestra EM Observados</th>
<th>Chi-cuadrado</th>
<th>p valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>43101</td>
<td>23</td>
<td>0,0495</td>
<td>0,8239</td>
</tr>
<tr>
<td>Febrero</td>
<td>39926</td>
<td>26</td>
<td>0,6750</td>
<td>0,4113</td>
</tr>
<tr>
<td>Marzo</td>
<td>43901</td>
<td>23</td>
<td>0,0992</td>
<td>0,7528</td>
</tr>
<tr>
<td>Abril</td>
<td>43230</td>
<td>30</td>
<td>1,5647</td>
<td>0,2110</td>
</tr>
<tr>
<td>Mayo</td>
<td>44738</td>
<td>31</td>
<td>1,5997</td>
<td>0,2059</td>
</tr>
<tr>
<td>Junio</td>
<td>41264</td>
<td>18</td>
<td>1,1890</td>
<td>0,2755</td>
</tr>
<tr>
<td>Julio</td>
<td>43017</td>
<td>17</td>
<td>2,2246</td>
<td>0,1358</td>
</tr>
<tr>
<td>Agosto</td>
<td>41930</td>
<td>29</td>
<td>1,4620</td>
<td>0,2266</td>
</tr>
<tr>
<td>Septiembre</td>
<td>43831</td>
<td>17</td>
<td>2,4801</td>
<td>0,1153</td>
</tr>
<tr>
<td>Octubre</td>
<td>45365</td>
<td>20</td>
<td>1,2196</td>
<td>0,2694</td>
</tr>
<tr>
<td>Noviembre</td>
<td>43419</td>
<td>32</td>
<td>2,7238</td>
<td>0,0989</td>
</tr>
<tr>
<td>Diciembre</td>
<td>44314</td>
<td>23</td>
<td>0,1311</td>
<td>0,7173</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>518036</td>
<td>289</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 10.- Valores observados y esperados de la frecuencia de nacimientos en las Islas Canarias.

Las tablas 9 y 10 muestran que no hay diferencias en el mes de nacimientos de los pacientes con E.M., comparados con la población general.

Fig.16.- Valores observados y esperados de la frecuencia de nacimientos en las Islas Canarias. En rojo se señala la frecuencia de nacimientos de E.M. y en azul la frecuencia de nacimientos de la población general.
La Figura 16 muestra como los pacientes con E.M. de las Islas Canarias estudiados, no presentan ninguna diferencia en la distribución de los meses de nacimiento, comparados con la frecuencia de nacimientos de la población general.

Los resultados obtenidos en las Islas Canarias señalan que no existe ninguna diferencia en la distribución de nacimientos por meses entre los pacientes con E.M. y la población general, según datos obtenidos del INE (Tabla 10 y Fig. 16).

La alta radiación solar durante todo el año en las Islas Canarias, por la latitud donde se encuentran, explicaría que no hubiera esas diferencias en los meses de nacimientos entre pacientes con E.M. y población general.
Estudio de la muestra de Tarrasa (Barcelona)

Nacimientos en la población de Tarrasa (Barcelona) entre 1941-1982

<table>
<thead>
<tr>
<th>Mes</th>
<th>Nacimientos nacional</th>
<th>% Nacimientos nacional</th>
<th>EM</th>
<th>% EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>diciembre</td>
<td>187310</td>
<td>8.0</td>
<td>35</td>
<td>9.0</td>
</tr>
<tr>
<td>noviembre</td>
<td>181479</td>
<td>7.7</td>
<td>23</td>
<td>5.9</td>
</tr>
<tr>
<td>octubre</td>
<td>195718</td>
<td>8.4</td>
<td>26</td>
<td>6.7</td>
</tr>
<tr>
<td>septiembre</td>
<td>196817</td>
<td>8.4</td>
<td>36</td>
<td>9.2</td>
</tr>
<tr>
<td>agosto</td>
<td>197951</td>
<td>8.4</td>
<td>37</td>
<td>9.5</td>
</tr>
<tr>
<td>julio</td>
<td>209200</td>
<td>8.9</td>
<td>41</td>
<td>10.5</td>
</tr>
<tr>
<td>junio</td>
<td>198142</td>
<td>8.5</td>
<td>19</td>
<td>4.9</td>
</tr>
<tr>
<td>mayo</td>
<td>207605</td>
<td>8.9</td>
<td>39</td>
<td>10.0</td>
</tr>
<tr>
<td>abril</td>
<td>196874</td>
<td>8.4</td>
<td>42</td>
<td>10.8</td>
</tr>
<tr>
<td>marzo</td>
<td>202626</td>
<td>8.6</td>
<td>35</td>
<td>9.0</td>
</tr>
<tr>
<td>febrero</td>
<td>180527</td>
<td>7.7</td>
<td>29</td>
<td>7.4</td>
</tr>
<tr>
<td>enero</td>
<td>189414</td>
<td>8.1</td>
<td>28</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>2343663</td>
<td></td>
<td>390</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 11: Distribución de las frecuencias de nacimientos por meses de los pacientes y de la población general de Tarrasa (Barcelona). Fuente: INE.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Población</th>
<th>Muestra EM</th>
<th>Chi-cuadrado</th>
<th>p valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>189414</td>
<td>28</td>
<td>0,4275</td>
<td>0,5132</td>
</tr>
<tr>
<td>Febrero</td>
<td>180527</td>
<td>29</td>
<td>0,0391</td>
<td>0,8433</td>
</tr>
<tr>
<td>Marzo</td>
<td>202626</td>
<td>35</td>
<td>0,0533</td>
<td>0,8174</td>
</tr>
<tr>
<td>Abril</td>
<td>196874</td>
<td>42</td>
<td>2,8438</td>
<td>0,0917</td>
</tr>
<tr>
<td>Mayo</td>
<td>207605</td>
<td>39</td>
<td>0,6297</td>
<td>0,4275</td>
</tr>
<tr>
<td>Junio</td>
<td>198142</td>
<td>19</td>
<td>6,4668</td>
<td>0,0110</td>
</tr>
<tr>
<td>Julio</td>
<td>209200</td>
<td>41</td>
<td>1,2074</td>
<td>0,2718</td>
</tr>
<tr>
<td>Agosto</td>
<td>197951</td>
<td>37</td>
<td>0,5464</td>
<td>0,4598</td>
</tr>
<tr>
<td>Septiembre</td>
<td>196817</td>
<td>36</td>
<td>0,3517</td>
<td>0,5532</td>
</tr>
<tr>
<td>Octubre</td>
<td>195718</td>
<td>26</td>
<td>1,4453</td>
<td>0,2293</td>
</tr>
<tr>
<td>Noviembre</td>
<td>181479</td>
<td>23</td>
<td>1,8600</td>
<td>0,1726</td>
</tr>
<tr>
<td>Diciembre</td>
<td>187310</td>
<td>35</td>
<td>0,5115</td>
<td>0,4745</td>
</tr>
<tr>
<td></td>
<td>2343663</td>
<td></td>
<td>390</td>
<td></td>
</tr>
</tbody>
</table>
4. RESULTADOS.

Tabla 12.- Valores observados y esperados de la frecuencia de nacimientos en Tarrasa (Barcelona). En azul se señala la menor frecuencia de nacimientos frente a la población general.

Las tablas 11 y 12 muestran que el 4,9% de los nacimientos de los pacientes con E.M. era en Junio, siendo menor estadísticamente significativo, que en la población general (p=0,0110).

Hay un mayor número de nacimientos en Abril, con una tendencia estadísticamente significativa (p=0,0917), aunque no estadísticamente significativa.

Los resultados obtenidos en Tarrasa (Barcelona) señalan que hay un menor número de nacimientos de los pacientes en el mes de Junio, con respecto a la población general, comparados con los datos de los nacimientos de la población general en Tarrasa (Barcelona), según datos obtenidos del INE (Tabla 12 y Fig. 17).

En Tarrasa (Barcelona), nacen menos pacientes en Junio, por lo que el primer trimestre del embarazo coincide con los meses de Octubre, Noviembre y Diciembre, que son de baja radiación solar, aunque según los datos de la AEMET, el número medio de horas de radiación solar anual en Tarrasa es de 2524 horas, superior a las de Vigo y Donostia. En los meses de Octubre, Noviembre y Diciembre, el número medio de horas de radiación solar en Tarrasa fue de 456 horas, superior a las 321 horas de Donostia y las 353 horas de Vigo. Curiosamente, el número medio de días despejados es similar en los meses de Octubre, Noviembre y Diciembre en Vigo y en Tarrasa (36 días), mientras que en Junio, nacen más pacientes con E.M. en Vigo y menos pacientes en Tarrasa.
Estudio de la muestra de Donostia-San Sebastián.
Nacimientos de la población de Donostia-San Sebastián entre 1941-1983.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Nacimientos Nacional</th>
<th>% Nacimientos Nacional</th>
<th>EM</th>
<th>% EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>diciembre</td>
<td>35251</td>
<td>8,1</td>
<td>55</td>
<td>9,0</td>
</tr>
<tr>
<td>noviembre</td>
<td>33130</td>
<td>7,6</td>
<td>40</td>
<td>6,6</td>
</tr>
<tr>
<td>octubre</td>
<td>35880</td>
<td>8,2</td>
<td>39</td>
<td>6,4</td>
</tr>
<tr>
<td>septiembre</td>
<td>36404</td>
<td>8,3</td>
<td>64</td>
<td>10,5</td>
</tr>
<tr>
<td>agosto</td>
<td>37622</td>
<td>8,6</td>
<td>64</td>
<td>10,5</td>
</tr>
<tr>
<td>julio</td>
<td>37522</td>
<td>8,6</td>
<td>49</td>
<td>8,1</td>
</tr>
<tr>
<td>junio</td>
<td>35939</td>
<td>8,2</td>
<td>37</td>
<td>6,1</td>
</tr>
<tr>
<td>mayo</td>
<td>38310</td>
<td>8,8</td>
<td>63</td>
<td>10,4</td>
</tr>
<tr>
<td>abril</td>
<td>36856</td>
<td>8,4</td>
<td>64</td>
<td>10,5</td>
</tr>
<tr>
<td>marzo</td>
<td>39479</td>
<td>9,0</td>
<td>43</td>
<td>7,1</td>
</tr>
<tr>
<td>febrero</td>
<td>34711</td>
<td>7,9</td>
<td>42</td>
<td>6,9</td>
</tr>
<tr>
<td>enero</td>
<td>35936</td>
<td>8,2</td>
<td>48</td>
<td>7,9</td>
</tr>
<tr>
<td></td>
<td>437040</td>
<td></td>
<td></td>
<td>608</td>
</tr>
<tr>
<td>TOTAL</td>
<td>703936</td>
<td></td>
<td></td>
<td>4886</td>
</tr>
</tbody>
</table>

Tabla 13: Distribución de las frecuencias de nacimientos por meses de los pacientes y de la población general de Donostia-San Sebastián. Fuente: INE.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Población</th>
<th>Muestra EM Observados</th>
<th>Chi-cuadrado</th>
<th>p valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>35936</td>
<td>48</td>
<td>0,0865</td>
<td>0,7687</td>
</tr>
<tr>
<td>Febrero</td>
<td>34711</td>
<td>42</td>
<td>0,8887</td>
<td>0,3458</td>
</tr>
<tr>
<td>Marzo</td>
<td>39479</td>
<td>43</td>
<td>2,8419</td>
<td>0,0918</td>
</tr>
<tr>
<td>Abril</td>
<td>36856</td>
<td>64</td>
<td>3,4440</td>
<td>0,0635</td>
</tr>
<tr>
<td>Mayo</td>
<td>38310</td>
<td>63</td>
<td>1,9335</td>
<td>0,1644</td>
</tr>
<tr>
<td>Junio</td>
<td>35939</td>
<td>37</td>
<td>3,6777</td>
<td>0,0551</td>
</tr>
<tr>
<td>Julio</td>
<td>37522</td>
<td>49</td>
<td>0,2143</td>
<td>0,6434</td>
</tr>
<tr>
<td>Agosto</td>
<td>37622</td>
<td>64</td>
<td>2,8381</td>
<td>0,0921</td>
</tr>
<tr>
<td>Septiembre</td>
<td>36404</td>
<td>64</td>
<td>3,8355</td>
<td>0,0502</td>
</tr>
<tr>
<td>Octubre</td>
<td>35880</td>
<td>39</td>
<td>2,5976</td>
<td>0,1070</td>
</tr>
<tr>
<td>Noviembre</td>
<td>33130</td>
<td>40</td>
<td>0,8695</td>
<td>0,3511</td>
</tr>
<tr>
<td>Diciembre</td>
<td>35251</td>
<td>55</td>
<td>0,7866</td>
<td>0,3751</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pag 52
4. RESULTADOS.

Tabla 14.- Valores observados y esperados de la frecuencia de nacimientos en Donostia. En rojo se señala la mayor frecuencia de nacimientos de E.M. frente a la población general y en azul la menor frecuencia de nacimientos frente a la población general.

Las tablas 13 y 14 muestran que no hay diferencias significativamente estadísticas, en el mes de nacimientos de los pacientes con E.M., comparados con la población general.

Fig. 18.- Valores observados y esperados de la frecuencia de nacimientos en Donostia. En rojo se señala la frecuencia de nacimientos de E.M. y en azul la frecuencia de nacimientos de la población general.

La tabla 14 muestra que hay una tendencia a un mayor número de nacimientos en septiembre ($p=0.0502$) y menor en junio ($p=0.0551$)

Los resultados obtenidos en Donostia-San Sebastián señalan que no existe ninguna diferencia en la distribución de nacimientos por meses, entre los pacientes con E.M. y la población general, según los datos de población general del INE (Tabla 14 y Fig. 18). Según los datos de la AEMET, el número medio de horas de radiación solar en Donostia es de 321 horas de Donostia, inferior a las de Vigo y Tarrasa, pero no hay ninguna diferencia en los meses de nacimientos, a diferencia de Vigo y Tarrasa, con similar latitud.

La tabla 16 resume los datos de las frecuencias de nacimientos de pacientes con E.M., comparados con la población general. Nacen más pacientes con E.M. en
4. RESULTADOS.

Comparación de nacimientos esperados con observados por provincias

<table>
<thead>
<tr>
<th></th>
<th>MADRID</th>
<th>PONTEVEDRA</th>
<th>MÁLAGA</th>
<th>LAS PALMAS</th>
<th>BARCELONA</th>
<th>DONOSTIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-C</td>
<td>p</td>
<td>Chi-C</td>
<td>p</td>
<td>Chi-C</td>
<td>p</td>
</tr>
<tr>
<td>Enero</td>
<td>3,127</td>
<td>0.0770</td>
<td>0.542</td>
<td>0.4616</td>
<td>1,693</td>
<td>0.1932</td>
</tr>
<tr>
<td>Febrero</td>
<td>7,698</td>
<td>0.0055</td>
<td>0.413</td>
<td>0.5202</td>
<td>5,328</td>
<td>0.0210</td>
</tr>
<tr>
<td>Marzo</td>
<td>0.075</td>
<td>0.7837</td>
<td>0.855</td>
<td>0.3552</td>
<td>0.821</td>
<td>0.3649</td>
</tr>
<tr>
<td>Abril</td>
<td>0.093</td>
<td>0.7599</td>
<td>0.001</td>
<td>0.9716</td>
<td>0.148</td>
<td>0.7004</td>
</tr>
<tr>
<td>Mayo</td>
<td>2,292</td>
<td>0.1301</td>
<td>2.205</td>
<td>0.1375</td>
<td>2,252</td>
<td>0.1334</td>
</tr>
<tr>
<td>Junio</td>
<td>1,474</td>
<td>0.2247</td>
<td>7,070</td>
<td>0.0078</td>
<td>3,115</td>
<td>0.0776</td>
</tr>
<tr>
<td>Julio</td>
<td>1,030</td>
<td>0.3102</td>
<td>0.019</td>
<td>0.8905</td>
<td>0.061</td>
<td>0.8055</td>
</tr>
<tr>
<td>Agosto</td>
<td>0.623</td>
<td>0.4299</td>
<td>0.007</td>
<td>0.9321</td>
<td>0.913</td>
<td>0.3393</td>
</tr>
<tr>
<td>Septiembre</td>
<td>0.108</td>
<td>0.7420</td>
<td>0.104</td>
<td>0.7475</td>
<td>0.343</td>
<td>0.5580</td>
</tr>
<tr>
<td>Octubre</td>
<td>0.034</td>
<td>0.8545</td>
<td>0.271</td>
<td>0.6030</td>
<td>1,268</td>
<td>0.2602</td>
</tr>
<tr>
<td>Noviembre</td>
<td>4,991</td>
<td>0.0255</td>
<td>0.086</td>
<td>0.7691</td>
<td>0.998</td>
<td>0.3177</td>
</tr>
<tr>
<td>Diciembre</td>
<td>0.305</td>
<td>0.5805</td>
<td>0.033</td>
<td>0.8563</td>
<td>0.052</td>
<td>0.8190</td>
</tr>
</tbody>
</table>

Tabla 15: Distribución de las frecuencias de nacimientos por meses de los pacientes y de la población general, por localizaciones estudiadas según datos obtenidos del INE. En rojo se señala la mayor frecuencia de nacimientos de E.M. frente a la población general y en azul la menor frecuencia de nacimientos frente a la población general.
RESULTADOS.

<table>
<thead>
<tr>
<th></th>
<th>MADRID</th>
<th>PONTEVEDRA</th>
<th>MÁLAGA</th>
<th>LAS PALMAS</th>
<th>BARCELONA</th>
<th>DONOSTIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>8,1%</td>
<td>9,1%</td>
<td>0,0770</td>
<td>8,5%</td>
<td>9,9%</td>
<td>0,4616</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Febrero</td>
<td>7,7%</td>
<td>6,1%</td>
<td>0,0055</td>
<td>7,8%</td>
<td>6,6%</td>
<td>0,5202</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marzo</td>
<td>8,5%</td>
<td>8,4%</td>
<td>0,7837</td>
<td>8,4%</td>
<td>6,6%</td>
<td>0,3552</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abril</td>
<td>8,5%</td>
<td>8,3%</td>
<td>0,7599</td>
<td>8,4%</td>
<td>8,5%</td>
<td>0,9716</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayo</td>
<td>9,2%</td>
<td>8,3%</td>
<td>0,1301</td>
<td>8,5%</td>
<td>5,7%</td>
<td>0,1375</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junio</td>
<td>8,7%</td>
<td>9,5%</td>
<td>0,2247</td>
<td>7,8%</td>
<td>12%</td>
<td>0,0078</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Julio</td>
<td>9,0%</td>
<td>8,3%</td>
<td>0,3102</td>
<td>8,3%</td>
<td>8,0%</td>
<td>0,8905</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agosto</td>
<td>8,3%</td>
<td>8,7%</td>
<td>0,4299</td>
<td>8,3%</td>
<td>8,5%</td>
<td>0,9321</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septiem</td>
<td>8,2%</td>
<td>8,4%</td>
<td>0,7420</td>
<td>8,6%</td>
<td>8,0%</td>
<td>0,7475</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octubre</td>
<td>8,2%</td>
<td>8,3%</td>
<td>0,8545</td>
<td>8,9%</td>
<td>9,9%</td>
<td>0,6030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noviembre</td>
<td>7,6%</td>
<td>8,9%</td>
<td>0,0255</td>
<td>8,1%</td>
<td>7,5%</td>
<td>0,7691</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diciembre</td>
<td>7,9%</td>
<td>7,6%</td>
<td>0,5805</td>
<td>8,4%</td>
<td>8,0%</td>
<td>0,8563</td>
</tr>
</tbody>
</table>

Tabla 16.- Valores observados y esperados de la frecuencia de nacimientos, en las diferentes poblaciones estudiadas. En rojo se señala la mayor frecuencia de nacimientos de E.M. frente a la población general y en azul la menor frecuencia de nacimientos frente a la población general.
7. RESUMEN.

Resultados en la muestra total de pacientes con E.M.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Nacimientos Nacional</th>
<th>% nacimientos nacional</th>
<th>Nacimientos EM</th>
<th>% nacimientos EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>enero</td>
<td>581430</td>
<td>8,3</td>
<td>442</td>
<td>9,0</td>
</tr>
<tr>
<td>febrero</td>
<td>545601</td>
<td>7,8</td>
<td>319</td>
<td>6,5</td>
</tr>
<tr>
<td>marzo</td>
<td>605208</td>
<td>8,6</td>
<td>393</td>
<td>8,0</td>
</tr>
<tr>
<td>abril</td>
<td>593221</td>
<td>8,4</td>
<td>432</td>
<td>8,8</td>
</tr>
<tr>
<td>mayo</td>
<td>623426</td>
<td>8,9</td>
<td>439</td>
<td>9,0</td>
</tr>
<tr>
<td>junio</td>
<td>590285</td>
<td>8,4</td>
<td>419</td>
<td>8,6</td>
</tr>
<tr>
<td>julio</td>
<td>614793</td>
<td>8,7</td>
<td>402</td>
<td>8,2</td>
</tr>
<tr>
<td>agosto</td>
<td>587030</td>
<td>8,3</td>
<td>429</td>
<td>8,8</td>
</tr>
<tr>
<td>septiembre</td>
<td>587653</td>
<td>8,3</td>
<td>423</td>
<td>8,7</td>
</tr>
<tr>
<td>octubre</td>
<td>590950</td>
<td>8,4</td>
<td>380</td>
<td>7,8</td>
</tr>
<tr>
<td>noviembre</td>
<td>548865</td>
<td>7,8</td>
<td>411</td>
<td>8,4</td>
</tr>
<tr>
<td>diciembre</td>
<td>571074</td>
<td>8,1</td>
<td>397</td>
<td>8,1</td>
</tr>
<tr>
<td>Total</td>
<td>7039536</td>
<td>100,00</td>
<td>4886</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Tabla 17.- Distribución de las frecuencias de nacimientos por meses de los pacientes y de la población general de todas las poblaciones estudiadas (Fuente: INE).

Resultados finales del mes de nacimiento de la muestra de pacientes con E.M. (observados), comparada con el mes de nacimiento esperado en la población general.
Muestra n=4.886

<table>
<thead>
<tr>
<th>Mes</th>
<th>Población</th>
<th>Muestra EM Observados</th>
<th>Chi-cuadrado</th>
<th>p valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>8,3%</td>
<td>9,0%</td>
<td>3,988</td>
<td>0,0458</td>
</tr>
<tr>
<td>Febrero</td>
<td>7,8%</td>
<td>6,5%</td>
<td>10,193</td>
<td>0,0014</td>
</tr>
<tr>
<td>Marzo</td>
<td>8,6%</td>
<td>8,0%</td>
<td>1,906</td>
<td>0,1674</td>
</tr>
<tr>
<td>Abril</td>
<td>8,4%</td>
<td>8,8%</td>
<td>1,088</td>
<td>0,2970</td>
</tr>
<tr>
<td>Mayo</td>
<td>8,9%</td>
<td>9,0%</td>
<td>0,100</td>
<td>0,7514</td>
</tr>
<tr>
<td>Junio</td>
<td>8,4%</td>
<td>8,6%</td>
<td>0,230</td>
<td>0,6315</td>
</tr>
<tr>
<td>Julio</td>
<td>8,7%</td>
<td>8,2%</td>
<td>1,568</td>
<td>0,2106</td>
</tr>
<tr>
<td>Agosto</td>
<td>8,3%</td>
<td>8,8%</td>
<td>1,243</td>
<td>0,2649</td>
</tr>
<tr>
<td>Septiembre</td>
<td>8,3%</td>
<td>8,7%</td>
<td>0,611</td>
<td>0,4343</td>
</tr>
<tr>
<td>Octubre</td>
<td>8,4%</td>
<td>7,8%</td>
<td>2,420</td>
<td>0,1198</td>
</tr>
<tr>
<td>Noviembre</td>
<td>7,8%</td>
<td>8,4%</td>
<td>2,568</td>
<td>0,1091</td>
</tr>
<tr>
<td>Diciembre</td>
<td>8,1%</td>
<td>8,1%</td>
<td>0,001</td>
<td>0,9737</td>
</tr>
</tbody>
</table>

Tabla 18.- Valores observados y esperados de la frecuencia de nacimientos en toda la población estudiada. En rojo se señala la mayor frecuencia de nacimientos de E.M. frente a la población general y en azul la menor frecuencia de nacimientos frente a la población general.
Las tablas 17 y 18 muestran que el 9% de los nacimientos de todos los pacientes con E.M. era en Enero, siendo mayor estadísticamente significativo, que en la población general (p=0,0458).

El 6,5% de los nacimientos de todos los pacientes con E.M. estudiados era en Febrero, siendo menor estadísticamente significativo, que en la población general (p=0,0014).

![Fig.19.-Valores observados y esperados de la frecuencia de nacimientos en toda la población. En rojo se señala la frecuencia de nacimientos de E.M. y en azul la frecuencia de nacimientos de la población general.](image)

La Figura 19 muestra como todos los pacientes con E.M. estudiados, nacen más en Enero y menos en Febrero, comparados con la frecuencia de nacimientos de la población general.

Los resultados obtenidos comparando los meses de nacimiento de la población general, con el mes de nacimiento de los 4.886 pacientes, muestran una mayor predisposición estadísticamente significativa para que los pacientes con E.M. nazcan más en el mes de Enero y menos en Febrero, según datos obtenidos del INE (Tabla 18 y Fig. 19). El primer trimestre de embarazo en Junio, Julio y Agosto parece proteger, ya que nacen menos niños en Febrero, pero no explicaría más nacimientos en Enero, a no ser que exista un factor ambiental invernal que justifique este mayor número de nacimientos. Es decir, los pacientes con E.M. nacidos en el mes de Enero, han presentado en los 2 primeros trimestres de su gestación, la mayor radiación solar posible durante todo el año (de Mayo a Octubre).

Se ha estudiado también, si en lugar de la asociación con un mes de nacimiento, fuera con una estación del año, y no hemos encontrado tal asociación.
A continuación se enumeran los principales hallazgos del estudio:

- En Madrid era más frecuente el nacimiento en Noviembre y menos en Febrero (Fig.13), lo cual no apoya la teoría de que un mayor número de pacientes nacen en la primavera (Abril-Mayo), por el déficit de vitamina D en los dos primeros trimestres de la gestación. Nuestros pacientes tuvieron los primeros meses de gestación entre Marzo y Agosto.

- En cambio, el nacimiento en el mes de Junio era más frecuente en la muestra de pacientes con E.M., comparada con los nacimientos totales locales en los mismos períodos, en Vigo (Fig. 14). Es el único centro que tiene una tendencia similar a la de los países del norte de Europa.

- En Málaga, el mes de Febrero era el mes de menos nacimientos (Fig. 15), de nuevo unos datos contrarios a lo publicado, ya que los pacientes habían tenido los primeros meses de gestación de Junio a Noviembre, meses de gran radiación solar.

- En las I. Canarias (Fig. 16) y Donostia (Fig. 18) no existían diferencias en el mes de nacimiento. Razonable al presentar una radiación solar suficiente durante todo el año en nuestro país.

- El hecho de que el nacimiento en Junio sea menos frecuente en Barcelona (Fig.17), es contradictorio con la hipótesis original, pero explica la presencia de una radiación solar mayor en nuestro país, que en países por encima del paralelo 42º.

- En la muestra conjunta (Fig. 19), eran mayores los nacimientos de pacientes con E.M. en Enero y menores en Febrero. Contradictorio con lo publicado para países occidentales por encima del paralelo 42º, ya que los nacimientos en Enero han tenido los primeros 6 meses de gestación entre Mayo y Octubre. El hecho de que un menor número de pacientes nazcan en Febrero, limita el periodo de mayor actuación de la mayor radiación solar, en los primeros 3 meses de gestación, que en este caso son Junio, Julio y Agosto.
4. RESULTADOS.

4.2 Resultados del objetivo de hábitos dietéticos y de vida, en infancia y adolescencia y riesgo de E.M.

Estadística descriptiva de la cohorte de pacientes y controles sanos

La muestra estudiada estaba formada por 491 casos / 491 controles sanos, pareados por edad y sexo. En la siguiente tabla se aprecia como las muestras eran homogéneas y perfectamente pareadas por edades y sexos.

<table>
<thead>
<tr>
<th>Paciente (n=491)</th>
<th>Control (n=491)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td></td>
</tr>
<tr>
<td>Hombre</td>
<td>157 (32,0%)</td>
</tr>
<tr>
<td>Mujer</td>
<td>334 (68,0%)</td>
</tr>
<tr>
<td>Edad</td>
<td></td>
</tr>
<tr>
<td>≤ 20 años</td>
<td>8 (1,6%)</td>
</tr>
<tr>
<td>21-30</td>
<td>64 (13,0%)</td>
</tr>
<tr>
<td>31-40</td>
<td>170 (34,6%)</td>
</tr>
<tr>
<td>41-50</td>
<td>154 (31,4%)</td>
</tr>
<tr>
<td>51-60</td>
<td>66 (13,4%)</td>
</tr>
<tr>
<td>>60</td>
<td>29 (5,9%)</td>
</tr>
<tr>
<td>Edad en años.</td>
<td></td>
</tr>
<tr>
<td>Media (DE)</td>
<td>41,7 (10,9)</td>
</tr>
<tr>
<td>Mediana</td>
<td></td>
</tr>
<tr>
<td>Moda</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 19.- Distribución por edades y sexos de las muestras de pacientes y controles sanos estudiadas.

En la siguiente tabla se muestran datos clínicos de edad de inicio de la enfermedad, EDSS al inicio y en la actualidad y tipo de enfermedad. La media de la edad de inicio de la enfermedad es de 35,1 años y la distribución según formas de la enfermedad es muy similar a las frecuencias del tipo de enfermedad en otros centros.

<table>
<thead>
<tr>
<th>Edad Inicio (n=491)</th>
<th>35,1 (10,0)</th>
<th>12 - 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDSS Inicio (n=248)</td>
<td>2,2 (1,7)</td>
<td>0 - 9</td>
</tr>
<tr>
<td>Edad Inicio (n=491)</td>
<td>2,3 (2,2)</td>
<td>0 - 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Media (DE)</th>
<th>Min-Máx</th>
<th>Mediana</th>
<th>Moda</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMRR</td>
<td>306 (62,3%)</td>
<td>0 - 9</td>
<td>1,5</td>
<td>1,0</td>
</tr>
<tr>
<td>EMSP</td>
<td>89 (8,1%)</td>
<td>0 - 9</td>
<td>1,5</td>
<td>1,0</td>
</tr>
<tr>
<td>EMPP</td>
<td>18 (3,7%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCA</td>
<td>43 (8,8%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIS</td>
<td>33 (6,7%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otras</td>
<td>2 (0,4%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 20.- Datos clínicos de edad de inicio de la enfermedad, EDSS al inicio y en la actualidad y tipo de enfermedad.
4. RESULTADOS.

Tipos de E.M.

La mayoría de los pacientes (62,3%) presentan la forma Recurrente-Remitente de la enfermedad, frente al 11,8% de formas progresivas, como en otras cohortes (Tabla 20 y Fig.20).

EDSS en la cohorte de pacientes

<table>
<thead>
<tr>
<th>Variación EDSS</th>
<th>Frequencia</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>-6,5</td>
<td>1</td>
<td>0,1</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>-2,0</td>
<td>3</td>
<td>0,3</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>-1,5</td>
<td>6</td>
<td>0,6</td>
<td>2,8</td>
</tr>
<tr>
<td></td>
<td>-1,0</td>
<td>10</td>
<td>1,0</td>
<td>4,6</td>
</tr>
<tr>
<td></td>
<td>-0,5</td>
<td>27</td>
<td>2,7</td>
<td>12,5</td>
</tr>
<tr>
<td></td>
<td>0,0</td>
<td>125</td>
<td>12,7</td>
<td>57,9</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>11</td>
<td>1,1</td>
<td>5,1</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>9</td>
<td>0,9</td>
<td>4,2</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>5</td>
<td>0,5</td>
<td>2,3</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>1</td>
<td>0,1</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>2,5</td>
<td>1</td>
<td>0,1</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>3,0</td>
<td>3</td>
<td>0,3</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>3,5</td>
<td>3</td>
<td>0,3</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>4,0</td>
<td>3</td>
<td>0,3</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>4,5</td>
<td>2</td>
<td>0,2</td>
<td>0,9</td>
</tr>
<tr>
<td></td>
<td>5,0</td>
<td>3</td>
<td>0,3</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>6,0</td>
<td>1</td>
<td>0,1</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>6,5</td>
<td>1</td>
<td>0,1</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>7,0</td>
<td>1</td>
<td>0,1</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>216</td>
<td>22,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabla 21. Variación de la EDSS en la cohorte de pacientes
En la Tabla 21 se puede ver la distribución de frecuencias de la escala de discapacidad (EDSS) en la cohorte de pacientes. El 93,4% de los pacientes tienen una escala de discapacidad menor o igual a 3, lo que indica que la mayoría son independientes. Esta frecuencia es de la diferencia entre el EDSS actual menos el EDSS al inicio. Por tanto, los valores negativos significan que el EDSS al inicio es mayor que el actual. Un 38,1% de los pacientes debutaron con brotes con mayor discapacidad de la que tienen en la actualidad, lo que explica que el EDSS de inicio sea mayor que el posterior.

Tabla 22.- EDSS al inicio de la enfermedad.

Los resultados de la Tabla 22 y la Figura 21 muestran que el 83,9% de los pacientes debutaron con brotes no discapacitantes de la enfermedad (EDSS< 3).
4. RESULTADOS.

Fig. 21. EDSS al inicio de la enfermedad.

EDSS

<table>
<thead>
<tr>
<th></th>
<th>Frequencia</th>
<th>Percent</th>
<th>ValidPercent</th>
<th>CumulativePercent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>303</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>34</td>
<td>3,5</td>
<td>11,2</td>
<td>11,2</td>
</tr>
<tr>
<td>1,0</td>
<td>94</td>
<td>9,6</td>
<td>31,0</td>
<td>42,2</td>
</tr>
<tr>
<td>1,5</td>
<td>46</td>
<td>4,7</td>
<td>15,2</td>
<td>57,4</td>
</tr>
<tr>
<td>2,0</td>
<td>29</td>
<td>3,0</td>
<td>9,6</td>
<td>67,0</td>
</tr>
<tr>
<td>2,5</td>
<td>18</td>
<td>1,8</td>
<td>5,9</td>
<td>72,9</td>
</tr>
<tr>
<td>3,0</td>
<td>11</td>
<td>1,1</td>
<td>3,6</td>
<td>76,6</td>
</tr>
<tr>
<td>3,5</td>
<td>17</td>
<td>1,7</td>
<td>5,6</td>
<td>82,2</td>
</tr>
<tr>
<td>4,0</td>
<td>5</td>
<td>0,5</td>
<td>1,7</td>
<td>83,8</td>
</tr>
<tr>
<td>4,5</td>
<td>1</td>
<td>0,1</td>
<td>0,3</td>
<td>84,2</td>
</tr>
<tr>
<td>5,0</td>
<td>2</td>
<td>0,2</td>
<td>0,7</td>
<td>84,8</td>
</tr>
<tr>
<td>5,5</td>
<td>1</td>
<td>0,1</td>
<td>0,3</td>
<td>85,1</td>
</tr>
<tr>
<td>6,0</td>
<td>17</td>
<td>1,7</td>
<td>5,6</td>
<td>90,8</td>
</tr>
<tr>
<td>6,5</td>
<td>9</td>
<td>0,9</td>
<td>3,0</td>
<td>93,7</td>
</tr>
<tr>
<td>7,0</td>
<td>4</td>
<td>0,4</td>
<td>1,3</td>
<td>95,0</td>
</tr>
<tr>
<td>7,5</td>
<td>5</td>
<td>0,5</td>
<td>1,7</td>
<td>96,7</td>
</tr>
<tr>
<td>8,0</td>
<td>5</td>
<td>0,5</td>
<td>1,7</td>
<td>98,3</td>
</tr>
<tr>
<td>8,5</td>
<td>2</td>
<td>0,2</td>
<td>0,7</td>
<td>99,0</td>
</tr>
<tr>
<td>9,0</td>
<td>3</td>
<td>0,3</td>
<td>1,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Missig</td>
<td>99,00</td>
<td>15,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>524</td>
<td>53,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>679</td>
<td>69,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>982</td>
<td>100,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 23.** Distribución de la EDSS en la cohorte de pacientes**
En la Tabla 23 y Figura 22 se observa como el 90,8% de los pacientes tienen una EDSS menor o igual a 6, lo que indica que la mayoría de los pacientes son independientes.

Fig.22.- Distribución de EDSS en la cohorte de pacientes

En resumen, nuestra cohorte de pacientes de E.M. del Hospital Universitario 12 de Octubre de Madrid, esta formada por más mujeres que hombres (68% mujeres vs.32% varones), en una proporción 2:1. La edad media es de 41,7 (10,9) años. El 66% de los pacientes tenían entre 30 y 50 años. La mayoría de los pacientes (62,3%) tienen la forma Recurrente-Remitente de la enfermedad, frente al 11,8% de formas progresivas (EMSP y EMPP).

La edad de inicio de la enfermedad fue de 35,1 años (12,64). La EDSS al inicio de la enfermedad era de 2,2 (1,7) y la EDSS actual de 2,3 (2,2), lo que indica que se trata de una cohorte con baja progresión de la enfermedad. Es decir, en líneas generales, nuestra cohorte es similar a otras cohortes españolas (Romero-Pinel 2011 y 2012).
RESULTADOS

Antecedentes y hábitos dietéticos

<table>
<thead>
<tr>
<th></th>
<th>Paciente</th>
<th>Control</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactancia (n=976)</td>
<td>392 (80,8%)</td>
<td>414 (84,3%)</td>
<td>ns</td>
</tr>
<tr>
<td>Suplemento alimenticio (n=981)</td>
<td>33 (6,7%)</td>
<td>159 (12,0%)</td>
<td>(<0,005)</td>
</tr>
<tr>
<td>Complejos Vitamínicos (n=976)</td>
<td>95 (19,6%)</td>
<td>185 (37,7%)</td>
<td>(<0,001)</td>
</tr>
<tr>
<td>Vacunación (n=975)</td>
<td>391 (80,6%)</td>
<td>439 (89,6%)</td>
<td>(<0,001)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hábitos alimenticios</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pescado (n=924)</td>
<td>(<0,005)</td>
</tr>
<tr>
<td>No</td>
<td>23 (5,0%)</td>
</tr>
<tr>
<td>(<3 \text{ veces/semana})</td>
<td>302 (65,5%)</td>
</tr>
<tr>
<td>(>3 \text{ veces/semana})</td>
<td>136 (29,5%)</td>
</tr>
<tr>
<td>Embutidos (n=922)</td>
<td>ns</td>
</tr>
<tr>
<td>No</td>
<td>21 (4,6%)</td>
</tr>
<tr>
<td>(<3 \text{ veces/semana})</td>
<td>226 (49,6%)</td>
</tr>
<tr>
<td>(>3 \text{ veces/semana})</td>
<td>209 (45,8%)</td>
</tr>
<tr>
<td>Huevos (n=937)</td>
<td>ns</td>
</tr>
<tr>
<td>No</td>
<td>17 (3,7%)</td>
</tr>
<tr>
<td>(<3 \text{ veces/semana})</td>
<td>299 (64,4%)</td>
</tr>
<tr>
<td>(>3 \text{ veces/semana})</td>
<td>148 (31,9%)</td>
</tr>
<tr>
<td>Café (n=425)</td>
<td>ns</td>
</tr>
<tr>
<td>No</td>
<td>230 (74,0%)</td>
</tr>
<tr>
<td>(<3 \text{ veces/semana})</td>
<td>60 (19,3%)</td>
</tr>
<tr>
<td>(>3 \text{ veces/semana})</td>
<td>21 (6,8%)</td>
</tr>
<tr>
<td>Leche bovina (n=948)</td>
<td>(<0,01)</td>
</tr>
<tr>
<td>No</td>
<td>15 (3,2%)</td>
</tr>
<tr>
<td>(<3 \text{ vasos/día})</td>
<td>233 (49,6%)</td>
</tr>
<tr>
<td>(>3 \text{ vasos/día})</td>
<td>222 (47,2%)</td>
</tr>
</tbody>
</table>

Tabla 24. Comparación de antecedentes y hábitos dietéticos entre pacientes y controles sanos.

En la Tabla 24 vemos resumido, cómo los controles sanos tomaban más suplementos alimenticios (\(p<0,005\)) durante la lactancia, y más complejos vitamínicos (\(p<0,001\)) durante la infancia y adolescencia, que los pacientes con EM de manera estadísticamente significativa. También eran más vacunados los controles sanos que los pacientes con E.M. (\(p<0,001\)).

Asimismo, los controles tomaban más pescado (\(p<0,005\)) y menos leche (\(p<0,01\)) que los pacientes. Sólo dos pacientes y tres controles tomaron leche de cabra, por lo que se estudiaron sólo los que tomaban leche bovina. La diferencia de la ingesta de huevos, embutidos y café no era significativa, entre controles y pacientes.
Hábito tabaco

<table>
<thead>
<tr>
<th></th>
<th>Paciente</th>
<th>Control</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo tabaco en su presencia (976)</td>
<td>196 (40,4%)</td>
<td>282 (57,4%)</td>
<td><0,001</td>
</tr>
<tr>
<td>Consumo Madre durante el embarazo (974)</td>
<td>24 (4,9%)</td>
<td>33 (6,7%)</td>
<td>ns</td>
</tr>
<tr>
<td>Consumo tabaco antes de los 20 años (907)</td>
<td>107 (23,8%)</td>
<td>184 (40,3%)</td>
<td><0,001</td>
</tr>
</tbody>
</table>

Tabla 25.- Diferencias en el consumo del tabaco.

Edad de inicio de la E.M. y tabaco

<table>
<thead>
<tr>
<th></th>
<th>Sí</th>
<th>NO</th>
<th>p</th>
<th>Diferencia de medias (IC95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo tabaco antes de los 20 años (n=450. 107 sí / 343 no)</td>
<td>32,7 (9,8)</td>
<td>35,5 (9,9)</td>
<td><0,05</td>
<td>2,8 (0,6-4,9)</td>
</tr>
<tr>
<td>Consumo tabaco en su presencia (n=485. 196 sí / 289 no)</td>
<td>33,2 (9,8)</td>
<td>36,2 (9,9)</td>
<td><0,005</td>
<td>3,1 (1,3-4,9)</td>
</tr>
<tr>
<td>Consumo Madre durante el embarazo (485)</td>
<td>33,6 (9,4)</td>
<td>35,1 (10,0)</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 26.- Edad Media (DE) de inicio de la EM en los sujetos que si/no han consumido tabaco o sus madres. Comparación de la edad de inicio con T de Student.

En la Tabla 25 y 26 vemos como el consumo del tabaco, antes de los 20 años y en presencia de los pacientes o controles, era mayor en los controles que en los pacientes (p<0,001); pero que aquellos pacientes que fumaban (9,8%), comenzaban con la enfermedad una media de 2,8 años antes que los que no fumaban (p<0,05), y los que habían sido fumadores pasivos, comenzaban 3 años antes con la enfermedad (p<0,005). El consumo de la madre de tabaco durante el embarazo no era diferente entre pacientes y sanos, ni influyó en la edad de inicio de la enfermedad.

Modelo de regresión logística: factores de riesgo de E.M.

En este modelo de regresión se han incluido los factores significativos que aportan riesgo o protección a la E.M. El riesgo de padecer la enfermedad en presencia del factor es el Riesgo Relativo (RR). El RR>1 es un factor de riesgo, y un RR<1 es un factor protector.
4. RESULTADOS.

En los factores o variables incluidos con más de 2 categorías una de ellas es la que se utiliza como referencia (lo que representaría un valor de RR=1), y el resto de las categorías tienen un RR determinado comparado con la categoría de referencia.

Este modelo clasifica correctamente al 65,9% de la muestra. El 69,1% de los pacientes, y el 62,7% de los controles quedan correctamente clasificados mediante el modelo.

<table>
<thead>
<tr>
<th>FACTORES</th>
<th>RR (IC 95%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complejos Vitamínicos</td>
<td>0,40 (0,29-0,56)</td>
<td><0,001</td>
</tr>
<tr>
<td>Vacunación</td>
<td>0,53 (0,33-0,85)</td>
<td><0,01</td>
</tr>
<tr>
<td>Consumo de tabaco antes de los 20 años</td>
<td>0,54 (0,39-0,75)</td>
<td><0,001</td>
</tr>
<tr>
<td>Consumo de tabaco en su presencia</td>
<td>0,63 (0,47-0,85)</td>
<td><0,005</td>
</tr>
<tr>
<td>Consumo leche bovina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0,65 (0,24-1,78)</td>
<td></td>
</tr>
<tr>
<td><3 vasos/día</td>
<td>0,69 (0,51-0,94)</td>
<td>ns</td>
</tr>
<tr>
<td>>3 vasos/día</td>
<td>1 (Ref.)</td>
<td></td>
</tr>
<tr>
<td>Consumo embutidos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1 (Ref.)</td>
<td></td>
</tr>
<tr>
<td><3 veces/semana</td>
<td>3,44 (1,61-7,35)</td>
<td><0,005</td>
</tr>
<tr>
<td>>3 veces/semana</td>
<td>3,45 (1,60-7,45)</td>
<td><0,005</td>
</tr>
<tr>
<td>Consumo huevos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1 (Ref.)</td>
<td></td>
</tr>
<tr>
<td><3 veces/semana</td>
<td>0,28 (0,09-0,86)</td>
<td><0,05</td>
</tr>
<tr>
<td>>3 veces/semana</td>
<td>0,26 (0,08-0,82)</td>
<td><0,05</td>
</tr>
<tr>
<td>Consumo pescado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1 (Ref.)</td>
<td></td>
</tr>
<tr>
<td><3 veces/semana</td>
<td>0,60 (0,25-1,43)</td>
<td>ns</td>
</tr>
<tr>
<td>>3 veces/semana</td>
<td>0,45 (0,18-1,09)</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 27.-Resumen de resultados de Modelo de regresión logística: factores de riesgo de E.M.

La ingesta de suplementos vitamínicos, pescado y huevos en la infancia y adolescencia, la vacunación en la infancia, no tomar leche bovina, fumar antes de los 20 años y ser fumador pasivo, protegen del riesgo de padecer E.M. Pero entre los pacientes que fumaban, la edad de inicio de la enfermedad era inferior en 3 años, frente a los pacientes que no fumaban antes de los 20 años.
La ingesta de embutidos en la infancia y adolescencia es un factor de riesgo para el desarrollo de E.M. En nuestro estudio no hay diferencias en recibir lactancia materna, ni en el consumo de café, entre pacientes y controles sanos.

4.3 Resultados del objetivo de mes de nacimiento y HLADRB1*15.

Inicialmente se obtuvo el genotipado de 100 pacientes con E.M. que acudieron de forma consecutiva a la consulta y aceptaron formar parte del estudio, firmando el C.I. Se compararon la frecuencia de alelos en los pacientes (n=100) con la de controles sanos (n=350) (Tabla 28) (Sánchez-Zapardiel, 2012).

Se ha comparado la escala de discapacidad (E.D.S.S.) entre dos grupos diferentes de pacientes: pacientes portadores de al menos un alelo de HLA DRB1*15 y pacientes que no portan este alelo. También se han comparado los tiempos de evolución de la enfermedad entre los dos grupos (Tabla 28).

<table>
<thead>
<tr>
<th>Formas de E.M.</th>
<th>Portadores DRB15</th>
<th>No portadores DRB15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Todos los pacientes E.M.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número de pacientes(n°)</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>Edad media de aparición (años)</td>
<td>35.0 ± 10.3</td>
<td>34.0 ± 10.2</td>
</tr>
<tr>
<td>Duración media (años) sin discap.</td>
<td>9.9 ± 6.9</td>
<td>9.0 ± 6.6</td>
</tr>
<tr>
<td>EDSS media</td>
<td>2.3</td>
<td>2.6</td>
</tr>
<tr>
<td>EDSS> 6.0 (%)</td>
<td>13%</td>
<td>19%</td>
</tr>
<tr>
<td>E.M.R.R.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número de pacientes(n°)</td>
<td>23</td>
<td>60</td>
</tr>
<tr>
<td>Edad media de aparición (años)</td>
<td>31.9 ± 8.7</td>
<td>33.9 ± 9.9</td>
</tr>
<tr>
<td>Duración media (años) sin discap.</td>
<td>9.5 ± 7.4</td>
<td>8.2 ± 5.1</td>
</tr>
<tr>
<td>EDSS media</td>
<td>2.1</td>
<td>2.5</td>
</tr>
<tr>
<td>EDSS> 6.0 (%)</td>
<td>10%</td>
<td>17%</td>
</tr>
<tr>
<td>E.M. Secundaria Progresiva</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número de pacientes(n°)</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Edad media de aparición (años)</td>
<td>51.3 ± 4.1</td>
<td>35.5 ± 9.0</td>
</tr>
<tr>
<td>Duración media (años) sin discap.</td>
<td>12.5 ± 5.1</td>
<td>15.5 ± 13.7</td>
</tr>
<tr>
<td>EDSS media</td>
<td>3.6</td>
<td>2.7</td>
</tr>
<tr>
<td>EDSS> 6.0 (%)</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>E.M. Primaria Progresiva</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número de pacientes(n°)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Edad media de aparición (años)</td>
<td>40</td>
<td>54</td>
</tr>
<tr>
<td>Duración media (años) sin discap.</td>
<td>14.0</td>
<td>1.0</td>
</tr>
<tr>
<td>EDSS media</td>
<td>1.5</td>
<td>4.5</td>
</tr>
<tr>
<td>EDSS> 6.0 (%)</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Tabla 28.-Edad media de aparición y de duración de la enfermedad sin discapacidad. EDSS, según el tipo de enfermedad, y ser portadores o no de HLA-DRB1 (Cohorte 100 pacientes).
4. RESULTADOS.

El HLA-DRB15*04 y HLA-DRB15*16 son más frecuentes en nuestra cohorte de pacientes con E.M. que en la población sana (Tabla 29). Los pacientes que portaban al menos un alelo DRB1*15 tenían una EDSS más baja (2,3), que aquellos que no eran portadores (2,5). Es más, los pacientes que eran monocigóticos para DRB1*15 (n=2) tenían una media de EDSS de 1,5. En la Tabla 30 se ve la distribución por sexos y EDSS de nuestra cohorte de 100 pacientes.

<table>
<thead>
<tr>
<th>Alelos HLA-DRB15</th>
<th>Frecuencia alelos en E.M. (n=100)</th>
<th>Frecuencia alelos en sanos (n=436)</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>*01</td>
<td>21%</td>
<td>22%</td>
<td>p=0,9329</td>
</tr>
<tr>
<td>*03</td>
<td>23%</td>
<td>25%</td>
<td>p=0,7718</td>
</tr>
<tr>
<td>*04</td>
<td>32%</td>
<td>21%</td>
<td>p=0,0262</td>
</tr>
<tr>
<td>*07</td>
<td>24%</td>
<td>29%</td>
<td>p=0,3787</td>
</tr>
<tr>
<td>*08</td>
<td>11%</td>
<td>7%</td>
<td>p=0,2534</td>
</tr>
<tr>
<td>*09</td>
<td>0%</td>
<td>1%</td>
<td>p=0,6988</td>
</tr>
<tr>
<td>*10</td>
<td>0%</td>
<td>1%</td>
<td>p=0,6988</td>
</tr>
<tr>
<td>*11</td>
<td>18%</td>
<td>24%</td>
<td>p=0,2476</td>
</tr>
<tr>
<td>*13</td>
<td>23%</td>
<td>29%</td>
<td>p=0,2787</td>
</tr>
<tr>
<td>*15</td>
<td>30%</td>
<td>26%</td>
<td>p=0,4903</td>
</tr>
<tr>
<td>*16</td>
<td>2%</td>
<td>0%</td>
<td>p=0,0404</td>
</tr>
</tbody>
</table>

Tabla 29.- Frecuencia de alelos en nuestra cohorte de pacientes con E.M. y controles sanos.

<table>
<thead>
<tr>
<th>EDSS</th>
<th>0</th>
<th>1-1,5</th>
<th>2-2,5</th>
<th>3-3,5</th>
<th>4-4,5</th>
<th>5-5,5</th>
<th>6-6,5</th>
<th>7-7,5</th>
<th>8-8,5</th>
<th>9-9,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mujer (73%)</td>
<td>5</td>
<td>38</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hombre (27%)</td>
<td>1</td>
<td>14</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabla 30.- Distribución por sexos y EDSS de los 100 pacientes de nuestra cohorte.

En conclusión, en nuestra cohorte no hay asociación entre el principal gen de susceptibilidad DRB1*15 y la peor evolución de la enfermedad. Es más, hay una tendencia, estadísticamente no significativa en pacientes que portan el alelo DRB1*15 a alcanzar tiempos de evolución más altos (9,9 años vs 9 años), sin discapacidad (EDSS<3), como el estudio del grupo de Ebers y colaboradores (DeLuca, 2007) ha encontrado.

Como nuestro objetivo era la asociación con el mes de nacimiento, se unieron los resultados de nuestros 100 pacientes, a los de 226 pacientes con E.M., procedentes de la Unidad de Enfermedades Desmielinizantes del Hospital Regional Carlos Haya de Málaga. Se obtuvo el genotipo de 326 pacientes con E.M. y 350 controles sanos, ajustados por
edad y sexo. De los 326 pacientes, 116 son portadores del alelo HLA-DRB1*15 y 210 son no portadores del HLA-DRB1*15.

Encontramos 56 genotipos diferentes en pacientes con EM. El alelo HLA-DR15 es más frecuente en pacientes (35%) que en controles (17%) (p<0.001).

<table>
<thead>
<tr>
<th>FCIA</th>
<th>GENOTIPOS</th>
<th>Pacientes E.M.</th>
<th>controles</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>*01</td>
<td>*15</td>
<td>4,0%</td>
<td>1,0%</td>
<td>0,0228</td>
</tr>
<tr>
<td>*03</td>
<td>*-</td>
<td>5,0%</td>
<td>2,0%</td>
<td>0,0539</td>
</tr>
<tr>
<td>*07</td>
<td>*15</td>
<td>8,0%</td>
<td>3,0%</td>
<td>0,0068</td>
</tr>
<tr>
<td>*11</td>
<td>*-</td>
<td>0,3%</td>
<td>3,0%</td>
<td>0,0153</td>
</tr>
<tr>
<td>*11</td>
<td>*13</td>
<td>1,0%</td>
<td>4,0%</td>
<td>0,0255</td>
</tr>
</tbody>
</table>

Tabla 31.-Distribución de frecuencia de genotipos, cuyas diferencias son significativas entre pacientes (n=326) y sanos (n=350). En rojo, mayor frecuencia en pacientes; en azul, mayor frecuencia en controles.

Los genotipos más frecuentes entre los pacientes son DR7/DR15, DR1/DR15 y DR3/- (p=0.0068, p= 0.0228 y p=0,0539) y entre los controles DR11/- y DR11/DR13 (p=0.0153 y 0.0255) (Tabla 31 y Fig. 23). A diferencia de estudios anteriores, los pacientes DR15+ presentaron un EDSS menor (2.3) que los no portadores (2.6). Los pacientes DR15+ alcanzan un tiempo mayor de evolución sin discapacidad (15±9 años vs. 12±9 años, p=0.0043). No se hallaron diferencias en cuanto al sexo o la edad de inicio.

![Fig.23.-Frecuencias de genotipos de pacientes y controles. Hay 56 genotipos diferentes y cuatro genotipos son más frecuentes en los pacientes, de forma significativa.]
4. RESULTADOS.

En la población de pacientes (n=326) son más frecuentes los genotipos con DR15, entre ellos, el DR7/DR15 (8%) es el que más frecuencia tiene. Como DR7 es un alelo protector, podría explicar que en nuestra población no se vea asociado DR15 con peor evolución. El siguiente en frecuencia en la población con EM es DR4/DR15, seguido del DR3/DR15.

En la población sana (n=350) el genotipo más frecuente es DR4/DR7, pero con una frecuencia parecida a la población EM. Las diferencias aparecen en los genotipos que portan DR11. Los portadores de DR11/- (3%) y DR11/DR13 (4%) son más frecuentes en los controles que en los pacientes, de forma significativa (Tabla 31 y Fig.23).

Comparados los pacientes con E.M. que eran portadores del alelo HLA-DRB1*15 (10,3%), frente a los pacientes no portadores de HLA-DRB1*15 (3,8%), significativamente más pacientes nacían en diciembre (p=0,0185). Comparados los nacimientos en controles sanos portadores de HLA-DRB1*15 (1%) frente a no portadores de HLA-DRB1*15 (10,3%), el mes de nacimiento en diciembre era significativamente más frecuente (p=0,028) en los no portadores del HLA-DRB1*15. Al comparar los portadores de HLA-DRB1*15 entre los pacientes (10,3%) y controles (2,6%), nacían más en diciembre los pacientes que los controles sanos, significativamente (p=0,036) (Tabla 32 y Fig. 24 y 25).

<table>
<thead>
<tr>
<th>Casos HLA-DRB15 +</th>
<th>HLA-DRB15 -</th>
<th>p</th>
<th>Controles HLA-DRB15 +</th>
<th>HLA-DRB15 -</th>
<th>p</th>
<th>HLA-DRB15 + Casos</th>
<th>Controles</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>7 (6.6%)</td>
<td>17 (8.1%)</td>
<td>0,4952</td>
<td>4 (10.3%)</td>
<td>12 (6.7%)</td>
<td>0,4468</td>
<td>7 (6.6%)</td>
<td>4 (10.3%)</td>
</tr>
<tr>
<td>Febr.</td>
<td>8 (6.9%)</td>
<td>14 (6.7%)</td>
<td>0,9369</td>
<td>5 (12.8%)</td>
<td>21 (11.8%)</td>
<td>0,8586</td>
<td>8 (6.9%)</td>
<td>5 (12.8%)</td>
</tr>
<tr>
<td>Marzo</td>
<td>4 (3.4%)</td>
<td>18 (8.6%)</td>
<td>0,0775</td>
<td>3 (7.7%)</td>
<td>13 (7.3%)</td>
<td>0,9329</td>
<td>4 (3.4%)</td>
<td>3 (7.7%)</td>
</tr>
<tr>
<td>Abril</td>
<td>12 (10.3%)</td>
<td>22 (10.5%)</td>
<td>0,9704</td>
<td>3 (7.7%)</td>
<td>13 (7.3%)</td>
<td>0,9329</td>
<td>12 (10.3%)</td>
<td>3 (7.7%)</td>
</tr>
<tr>
<td>Mayo</td>
<td>10 (8.6%)</td>
<td>18 (8.6%)</td>
<td>0,9879</td>
<td>1 (2.6%)</td>
<td>13 (7.3%)</td>
<td>0,2752</td>
<td>10 (8.6%)</td>
<td>1 (2.6%)</td>
</tr>
<tr>
<td>Junio</td>
<td>9 (7.8%)</td>
<td>19 (9.0%)</td>
<td>0,6909</td>
<td>5 (12.8%)</td>
<td>16 (9.0%)</td>
<td>0,4635</td>
<td>9 (7.8%)</td>
<td>5 (12.8%)</td>
</tr>
<tr>
<td>Julio</td>
<td>5 (4.3%)</td>
<td>16 (7.6%)</td>
<td>0,2440</td>
<td>3 (7.7%)</td>
<td>10 (5.6%)</td>
<td>0,6210</td>
<td>5 (4.3%)</td>
<td>3 (7.7%)</td>
</tr>
<tr>
<td>Agosto</td>
<td>12 (10.3%)</td>
<td>13 (6.2%)</td>
<td>0,1772</td>
<td>3 (7.7%)</td>
<td>16 (9.0%)</td>
<td>0,7953</td>
<td>12 (10.3%)</td>
<td>3 (7.7%)</td>
</tr>
<tr>
<td>Sept.</td>
<td>11 (9.5%)</td>
<td>21 (10.0%)</td>
<td>0,8805</td>
<td>3 (7.7%)</td>
<td>15 (8.4%)</td>
<td>0,8802</td>
<td>11 (9.5%)</td>
<td>3 (7.7%)</td>
</tr>
<tr>
<td>Oct.</td>
<td>13 (11.2%)</td>
<td>21 (10.0%)</td>
<td>0,7328</td>
<td>5 (12.8%)</td>
<td>21 (11.8%)</td>
<td>0,8586</td>
<td>13 (11.2%)</td>
<td>5 (12.8%)</td>
</tr>
<tr>
<td>Nov.</td>
<td>13 (11.2%)</td>
<td>23 (11.0%)</td>
<td>0,9440</td>
<td>4 (10.3%)</td>
<td>8 (4.5%)</td>
<td>0,1539</td>
<td>13 (11.2%)</td>
<td>4 (10.3%)</td>
</tr>
<tr>
<td>Dic.</td>
<td>12 (10.3%)</td>
<td>8 (3.8%)</td>
<td>0,0186</td>
<td>1 (2.6%)</td>
<td>20 (11.2%)</td>
<td>0,0280</td>
<td>12 (10.3%)</td>
<td>1 (2.6%)</td>
</tr>
</tbody>
</table>

Tabla 32.- Número y porcentaje de nacimientos por mes, según sean o no portadores de HLA-DRB1*15 en pacientes y controles
4. RESULTADOS.

Fig.24.- Frecuencia de nacimientos por mes en pacientes portadores de HLA-DRB1*15 (HLA-DRB15+).

El 10,3% de los pacientes de E.M. portadores de HLA-DRB1*15, habían nacido en Diciembre frente al 3,8% de los pacientes de E.M. no portadores de HLA-DRB1*15 (p=0,0186). En Octubre y Noviembre habían nacido el 11,2%, respectivamente, de los pacientes con HLA-DRB1*15, pero el porcentaje de los nacidos en los mismos meses, no portadores, no difería (10% y 11% respectivamente) (Fig. 24 y 25).

Fig.25.- Frecuencia de nacimientos en diciembre entre casos y controles, portadores y no de HLA-DRB1*15 (HLA-DR15)

Significativamente, más controles sanos no portadores del alelo HLA-DRB1*15, nacieron en diciembre (11,2%), comparado con los controles que eran portadores de HLA-DRB1*15 (2,6%, p=0,0260). Igualmente, el 10,3% de los pacientes portadores de HLA-DRB1*15, nacieron en Diciembre, frente al 2,6% de los pacientes portadores (p=0,0365) (Tabla 32 y Fig.25).
4. RESULTADOS.

Columna 1. Muestra de casos con EM y HLA-DRB15+ n=116 (30 H12o y 86 Málaga)
Columna 2. Muestra de casos con EM y HLA-DRB15+ n=116 (36 hombres y 80 mujeres)
Columna 3. Muestra de casos con EM y HLA-DRB15- n=210 (55 hombres y 155 mujeres)

<table>
<thead>
<tr>
<th></th>
<th>Casos EM HLA-DRB15+</th>
<th></th>
<th>Casos EM HLA-DRB15+</th>
<th></th>
<th>Casos EM HLA-DRB15-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H12o</td>
<td>Málaga</td>
<td>p</td>
<td>Hombre</td>
<td>Mujer</td>
</tr>
<tr>
<td>Enero</td>
<td>0</td>
<td>7</td>
<td>(8.1%)</td>
<td>0.1070</td>
<td>0</td>
</tr>
<tr>
<td>Febrero</td>
<td>3</td>
<td>(10.0%)</td>
<td>5</td>
<td>(5.8%)</td>
<td>0.4359</td>
</tr>
<tr>
<td>Marzo</td>
<td>2</td>
<td>(6.7%)</td>
<td>2</td>
<td>(2.3%)</td>
<td>0.2619</td>
</tr>
<tr>
<td>Abril</td>
<td>4</td>
<td>(13.3%)</td>
<td>8</td>
<td>(9.3%)</td>
<td>0.5325</td>
</tr>
<tr>
<td>Mayo</td>
<td>2</td>
<td>(6.7%)</td>
<td>8</td>
<td>(9.3%)</td>
<td>0.6579</td>
</tr>
<tr>
<td>Junio</td>
<td>2</td>
<td>(6.7%)</td>
<td>7</td>
<td>(8.1%)</td>
<td>0.7951</td>
</tr>
<tr>
<td>Julio</td>
<td>2</td>
<td>(6.7%)</td>
<td>3</td>
<td>(3.5%)</td>
<td>0.4605</td>
</tr>
<tr>
<td>Agosto</td>
<td>2</td>
<td>(6.7%)</td>
<td>10</td>
<td>(11.6%)</td>
<td>0.4423</td>
</tr>
<tr>
<td>Septiembre</td>
<td>4</td>
<td>(13.3%)</td>
<td>7</td>
<td>(8.1%)</td>
<td>0.4031</td>
</tr>
<tr>
<td>Octubre</td>
<td>2</td>
<td>(6.7%)</td>
<td>11</td>
<td>(12.8%)</td>
<td>0.3599</td>
</tr>
<tr>
<td>Noviembre</td>
<td>3</td>
<td>(10.0%)</td>
<td>10</td>
<td>(11.6%)</td>
<td>0.8077</td>
</tr>
<tr>
<td>Diciembre</td>
<td>4</td>
<td>(13.3%)</td>
<td>8</td>
<td>(9.3%)</td>
<td>0.5325</td>
</tr>
</tbody>
</table>

Tabla 33.- Frecuencias de nacimientos por mes, según sean o no portadores de HLA-DRB1*15 en pacientes de nuestro hospital y Málaga, y sus diferencias por sexo.

Posteriormente, se estudió si había diferencias entre el mes de nacimiento, ser portador o no del HLA-DRB1 y el sexo, no encontrando diferencias. Tampoco existían diferencias en los datos de los dos centros estudiados (Hospital Universitario 12 de Octubre de Madrid y Hospital Regional Carlos Haya de Málaga) (Tabla 33). Es decir, en nuestra cohorte no existe una asociación entre el HLA-DRB1*15 y la peor evolución de la enfermedad y el mes de nacimiento en Diciembre, el genotipo HLA-DRB1*15 y el riesgo de presentar E.M. están asociados.
5. DISCUSIÓN
5. DISCUSIÓN

Con los datos y resultados obtenidos, hemos obtenido información sobre los objetivos de este trabajo que vamos a revisar y analizar.

5.1 Mes de nacimiento y riesgo de E.M

Las diferencias de edades entre las poblaciones estudiadas y la población general se solventaron, aceptando un rango de edad, que incluyera el 90% de los pacientes.

Elegimos los diferentes centros en virtud de la diferente latitud y el número de pacientes. Los tres centros del norte de España tenían aproximadamente el mismo número de pacientes que los de Madrid y Málaga, por lo que no recabamos más información de centros del sur de España. La gran diferencia de latitud de las Islas Canarias con respecto a la península hacia interesante su estudio.

El riesgo para padecer E.M. está incrementado en los nacidos a finales de primavera, comparados con los nacidos a finales de otoño, en los países del norte de Europa y Canadá. El mecanismo no está claro, pero se cree que las variaciones en la radiación ultravioletas, infecciones u otros factores pueden contribuir.

En nuestro estudio, se demuestra que en España son mayores los nacimientos de pacientes con E.M. en Enero, y menores en Febrero. El primer trimestre de embarazo en Junio, Julio y Agosto parece proteger, ya que nacen menos niños en Febrero, pero no explicaría más nacimientos en Enero, a no ser que exista un factor ambiental invernal que justifique este mayor número de nacimientos. Es decir, los pacientes con E.M. nacidos en el mes de Enero, han presentado en los 2 primeros trimestres de su gestación, la mayor radiación solar posible durante todo el año (de Mayo a Octubre). Debe haber un factor ambiental independiente de la radiación solar, que lo justifique, o quizás la radiación solar de nuestro país, incluso en las zonas de menor índice de radiación, sigue siendo mayor que la del centro y norte de Europa o EEUU para que evidencie los cambios en los niveles de vitamina D.

Nuestro estudio confirma lo que se había observado en otros trabajos, y es que el mes de nacimiento cambia con la latitud (Staples, 2010). El mes de nacimiento también está presente en otras enfermedades, como la diabetes tipo I que está asociada con el déficit de vitamina D (Kahn, 2009). También se ha realizado el estudio agrupando los meses por estaciones (primavera, verano, otoño e invierno), no encontrando significación estadística según la estación del año. El hecho de que en otras patologías (diabetes,
5. DISCUSIÓN.

esquizofrenia, autismo, etc.) si hay diferencias por estaciones del año, refuerza la idea de que hay un factor ambiental que interacciona con el riesgo de desarrollar esas enfermedades. Un estudio realizado en pacientes con E.M. de Sicilia (Salemi, 2000), muestra que no encuentran los mismos resultados que en el hemisferio norte, pero si un mayor número de nacimientos, desde Junio a Noviembre, es decir verano y otoño.

En Francia se ha confirmado un menor riesgo para los nacidos en Noviembre (de Abreu, 2009), pero no hay un mes de mayores nacimientos. Asimismo, el estudio americano de la cohorte NARCOMS sólo encontró que el mayor número de nacimientos de pacientes con E.M. era en la primavera, por encima de la latitud 42ºN (Munger, 2011).

El déficit de vitamina D y el virus de Epstein-Baar (VEB), podrían interaccionar para incrementar el riesgo de E.M. Una proporción alta de los genes que regulan la proteína viral EBNA-3 son regulados por la vitamina D, por lo que el VEB potencia el déficit de vitamina D (Disanto, 2011), bloqueando los efectos de la vitamina D. Una asociación estadística entre la prevalencia de la infección por mononucleosis infecciosa y la radiación UV, podría explicar el 72% de las variaciones de prevalencia en Inglaterra (Ramagopalan, 2011b). En España, el mayor número de nacimientos de los pacientes con E.M. en Enero, puede guardar relación con la mayor prevalencia de infecciones por VEB en invierno. La asociación entre E.M. y VEB es mayor cuando los pacientes sufren la primoinfección más tarde. Sin embargo, esto no explicaría por qué motivo el mes de menor nacimiento de los pacientes es en febrero.

El hecho de que el mes de nacimiento, donde menor número de pacientes nacen, sea Febrero, apoya la protección de la radiación solar en los primeros 3 meses de la gestación (Junio, Julio y Agosto). En Donostia-San Sebastián y en las Islas Canarias, no hay ningún mes de nacimiento con diferencias con la población general. En las I. Canarias se explicaría por la latitud y una radiación solar mantenida durante todo el año. El que no haya un mes de mayor número de nacimientos en Donostia-San Sebastián, es apoyado por un estudio del grupo de A. Antigüedad de Bilbao, que en 2010 comunicaron en la Reunión Anual de la Sociedad Española de Neurología, que no había ninguna diferencia del mes de nacimiento de sus pacientes con E.M. (cohorte de Bilbao), con la población general.

Estos estudios indican que, el mes de nacimiento es un indicador importante que avala que el periodo prenatal es crucial. Varios estudios epidemiológicos describen la importancia de un adecuado suplemento de vitamina D en etapas tempranas. Se ha demostrado que algunos cambios prenales moleculares y morfológicos, se han observado cuando la vitamina D se quita de la dieta tras la lactancia y no inmediatamente
tras el nacimiento (Feron, 2005). El déficit de vitamina D postnatal en ratas, induce una aparición temprana y un incremento de la severidad de los síntomas de Encefalomielitis Aguda Experimental (E.A.E.). Dando suplementos postnatales de vitamina D a ratas, se retrasa la aparición de E.A.E y la severidad también (de Abreu, 2011). Un adecuado suplemento de vitamina D en etapas tempranas, no sólo durante la gestación, podría explicar las diferencias que obtenemos, en cuanto a que el mes de mayor número de nacimientos sea Enero y el de menor número, Febrero: otros factores ambientales interactúan en etapas tempranas.

El mayor número de nacimientos de los pacientes con E.M. de Vigo (44º15N), en Junio, no se explicarían por la menor radiación solar durante la gestación, ya que Donostia-San Sebastián (43º19N) presenta un número medio anual de horas de sol de 1695 horas frente a las 2212 horas de Vigo, y en Donostia, no hay ningún mes de mayores nacimientos. Estos datos son de libre consulta en la página web de la Agencia Estatal de Metereología (AEMET), donde se reflejan las medias de los datos climáticos desde el año 1971 al año 2000. Estas diferencias, también podrían ser explicadas por el número medio anual de días despejados, siendo en Vigo de 92 días y en Donostia de 37 días.

Tampoco Tarrasa (Barcelona) (41º33N) presenta ningún mes de mayores nacimientos. En Tarrasa (Barcelona), nacen menos pacientes en Junio, lo cual es paradójico, ya que el primer trimestre del embarazo coincide con los meses de Octubre, Noviembre y Diciembre, que son de baja radiación solar, aunque según los datos de la AEMET, el número medio de horas de radiación solar anual en Tarrasa es de 2524 horas, superior a las de Vigo y Donostia. En los meses de Octubre, Noviembre y Diciembre, el número medio de horas de radiación solar en Tarrasa fue de 456 horas, superior a las 321 horas de Donostia y las 353 horas de Vigo. Curiosamente, el número medio de días despejados es similar en los meses de Octubre, Noviembre y Diciembre en Vigo y en Tarrasa (36 días), mientras que en Junio, nacen más pacientes con E.M. en Vigo y menos pacientes en Tarrasa.

Es llamativo que en Málaga, Madrid y la muestra conjunta, el mes de menos nacimientos de pacientes con E.M. sea Febrero. Teniendo en cuenta que los nacidos en Febrero, desarrollaron el primer trimestre de la gestación de Junio a Agosto, se confirma que la mayor radiación en el primer trimestre de la gestación protege del riesgo de desarrollar E.M. En Madrid era más frecuente el nacimiento en Noviembre, lo cual no sería explicado por una menor radiación solar, durante los meses de Marzo a Mayo, sino por un factor ambiental en otoño-invierno.
El único estudio que relaciona el mes de nacimiento con la latitud, radiación solar en lugar de nacimiento y edad de inicio de la enfermedad, se realizó en la cohorte nacional de 967 veteranos del Multiple Sclerosis Surveillance Registry norteamericano, llegando a la conclusión de que los pacientes con E.M.R.R., que nacieron en invierno y cuyo lugar de nacimiento era en áreas de baja radiación solar, tenían un comienzo de la enfermedad 2.8 años antes que los que nacieron en otra estación, y en áreas de radiación solar media-alta (p=0.02) (McDowell, 2010). Este mismo grupo de estudio encontró que los pacientes con Esclerosis Múltiple Remitente-Recurrrente, que residían en áreas de baja exposición solar, y habían tenido baja exposición solar, entre los 6-15 años de edad, iniciaron la enfermedad 2.1 años antes que los demás.

Este estudio apoya en parte nuestros hallazgos: el nacimiento de los pacientes en invierno.

5.2 Hábitos de vida y dietéticos y riesgo de E.M.

Como ya se ha comentado con anterioridad, el periodo en el cual actúa el déficit de vitamina D, como factor de riesgo de desarrollo de E.M., es fundamental. Los efectos de la vitamina D en la infancia y adolescencia se basan en varios estudios epidemiológicos. Se sabe que los emigrantes de Norte de Europa a Sudáfrica tienen menor riesgo de E.M., si lo hacen antes de los 15 años. Asimismo, la baja exposición solar y los bajos niveles de vitamina D, durante la adolescencia, aumentan el riesgo de E.M., ya que en este periodo se desarrolla el timo. Numerosos estudios clínicos y en modelos de experimentación (E.A.E.), apoyan la idea de que los factores dietéticos juegan un papel en el riesgo de desarrollar E.M., al igual que el tabaco, la infección por virus de Epstein-Barr y los niveles de vitamina D por la radiación solar. Pero a diferencia de otros factores ambientales, la dieta se puede modificar y de esta forma, cambiar el riesgo de padecer E.M.

Desde el punto de vista epidemiológico, es muy difícil estudiar los hábitos dietéticos, salvo que se utilicen cuestionarios muy amplios, que no son el objeto de este estudio y crean más variables de confusión. Nuestras dos poblaciones estudiadas de pacientes y controles sanos son semejantes. Hay que tener en cuenta el sesgo del recuerdo y el sesgo de recordar cuando uno ya está enfermo, a la hora de valorar los datos reflejados en estas encuestas, en las cuales preguntábamos sobre hábitos alimentarios y de vida antes de los 20 años, en los encuestados y sus madres. El gran número de pacientes y controles da potencia al estudio.
Nuestro estudio encuentra que la ingesta de suplementos vitamínicos, pescado y huevos en lactancia e infancia, la vacunación en la infancia, fumar antes de los 20 años y ser fumador pasivo, protegen del riesgo de padecer E.M. Los estudios de Ascherio ya confirmaron que las mujeres que tomaban suplementos de vitamina D (a partir de 400 UI), tenían una incidencia 41% menor de padecer E.M., que las que no lo tomaban (Munger, 2004; Munger, 2010; Ascherio, 2010), al igual que nuestro estudio. Otros estudios caso-control no han encontrado esta asociación, cuando en lugar de medir los suplementos de vitamina D, tenían en cuenta los niveles séricos de vitamina D (Soilu-Hanninen, 2008) o, sólo se confirmaba esta asociación, en mujeres (Kragt, 2009).

Los estudios ecológicos indican que la ingesta de pescado es un factor protector de E.M. (Lauer, 2006). Dos estudios caso-control confirmaron un factor protector de la dieta rica en pescado en ambos géneros, sobre todo en la adolescencia (Kampman, 2007), o por lo menos, en mujeres (Ghadirian, 1998). El estudio de las dos cohortes de enfermeras americanas (Zhang, 2000), no confirmó esta asociación, pero se centraba en la dieta en adultos. Tan importante es la ingesta de pescado, que puede explicar las variaciones en la prevalencia de la enfermedad en los países nórdicos. El norte de Noruega tendría que tener la incidencia de E.M., más alta que en Escocia e Inglaterra, pero incluso en el norte costero es la mitad que en las zonas del interior de Noruega (Kampman, 2007). Podría ser debido al consumo de pescado azul, como puede también ocurrir en la costa atlántica de Francia, donde es menor la incidencia de E.M., que en zonas con igual radiación solar de Francia. Las especies de pescados grasos (atún, sardinas, salmón y arenques) son la principal fuente de vitamina D, en la dieta. También son ricos en ácidos grasos omega 3, que presentan propiedades inmunomoduladoras. La ingesta de aceite de hígado de bacalao en la infancia, se asoció con un retraso de la enfermedad de 4 años, en un estudio americano (McDowell, 2011).

Un estudio caso-control demostró que las grasas y proteínas de animales no marinos, eran un factor de riesgo para E.M. (Ghadirian, 1998). Nuestro estudio demuestra que la ingesta de embutidos en la infancia y adolescencia es un factor de riesgo para el desarrollo de E.M. Varios estudios ecológicos han demostrado que la carne (Lauer, 1994) y especialmente la de cerdo (Nanji 1986) y la de carne ahumada y salchichas ahumadas (Lauer, 2008), son factores de riesgo para el desarrollo de E.M.

En nuestro estudio, no hay diferencias en recibir lactancia materna ni el consumo de café, entre pacientes y controles sanos. En mayo del 2012, el grupo de Ascherio...
(Massa, 2012), no ha encontrado asociación entre el consumo de café y alcohol, y el riesgo de E.M., en la cohorte del Nurses’ Health Study, al igual que en nuestro estudio.

La ingesta de leche y derivados lácteos muestran una asociación ecológica con el riesgo de E.M. a una escala global (Lauer, 2006), o en países de gran extensión como es Estados Unidos (Lauer, 1994), la antigua Unión Soviética (Lauer, 1994) y Australia (Butcher, 1986). Estos estudios no se han confirmado en regiones pequeñas (Ghadirian, 1998) o en estudios caso-control (Lauer, 1990). Aunque pueda parecer paradójico que la ingesta de leche bovina sea un factor de riesgo para desarrollar E.M., como parece mostrar nuestro estudio, un estudio reciente (Munger, 2011) en una cohorte prospectiva, ha encontrado que los pacientes con E.M. consumían más cantidad de leche que los controles sanos, durante la adolescencia, al igual que nosotros. No hicimos diferencias entre leche bovina o caprina, y si es pasteurizada o natural, ya que sólo dos pacientes y tres controles, tomaban leche de cabra en la infancia y la leche es pasteurizada en Madrid desde hace 40 años. La leche de cabra es la más parecida a la humana, y por lo mismo, menos antigénica, y la bovina puede inducir, en modelos animales, E.A.E. Por otra parte, la leche pasteurizada carece de la población de macrobiotas que pueden activar las células T reguladoras.

Una explicación biológica de porqué los derivados lácteos pueden ser un factor de riesgo de E.M., estriba en que la leche de vaca contiene grandes cantidades de grasas saturadas y la proteína butirofilínica de la leche, presenta mimetismo molecular con epitopos de las glicoproteínas de los oligodendrocitos de la mielina, que se ha demostrado que son unos de los candidatos a autoantígenos en E.M. (Guggenmos, 2004).

La cantidad de vitamina D que se necesita para tener unos niveles adecuados es de 1000 UI por día. La cantidad de vitamina D que hay en un vaso de leche es de 240 UI. Se necesitan 4 vasos de leche por día para alcanzar 1000 UI por día (Munger, 2010). Pero aunque la leche tenga poca cantidad de vitamina D, los resultados de nuestro estudio parecen contradictorios. Los resultados de los estudios de la cohorte de enfermeras americanas, demostraron que el riesgo relativo de desarrollar E.M. fue un 38% menor, en las hijas de las madres que tomaron de 2 a 3 vasos diarios de leche durante la gestación, frente a las que tomaban menos de 3 vasos mensuales (Mirzaei, 2011). Este estudio apoya la importancia de la ingesta de leche, en este caso en las madres durante la gestación, en la prevención del riesgo de padecer E.M.

Un estudio de 2010 de Ramagopalan, apoya nuestros resultados. Ellos no encontraron que la alergia infantil a la leche fuera un factor de riesgo para E.M.
Estudiaron en el Canadian Collaborative Project on Genetic Susceptibility to Multiple Sclerosis (CCPGSMS) a 6.630 pacientes con E.M., y 2.509 controles parejas con alergia a la leche de vaca. No encontraron diferencias en el riesgo de desarrollar E.M. (Ramagopalan, 2010a). El mismo grupo ha estudiado que la ingesta de vitamina D durante la adolescencia, al contrario de lo que se pensaba, no reduce el riesgo de desarrollar E.M. y que, en cambio, la ingesta de leche entera aumenta dicho riesgo (Ebers, 2009).

Existen diferencias en el consumo de tabaco entre los pacientes y controles sanos. Los controles sanos fumaban más, antes de los 20 años, y también fumaban más en su presencia. No existían diferencias en el consumo del tabaco en las madres, durante la gestación de los pacientes y controles sanos. Entre los pacientes que fumaban, la edad de inicio era inferior hasta 2,8 años, en los que fumaban antes de los 20 años, y de 3 años en los que habían sido fumadores pasivos antes de esa edad. La edad de inicio de la enfermedad, no se vio afectada por el consumo de tabaco, durante la gestación de la madre. Se ha demostrado que el tabaco aumenta la progresión de la discapacidad en los pacientes con E.M., aunque un estudio reciente revela, que la dieta rica en pescado mejora el curso de la enfermedad, independientemente del consumo de tabaco (Pittas F, 2009).

El menor consumo de tabaco, en los pacientes y sus familiares antes de los 20 años, puede ser explicada por la teoría higiénica, que estipula que los pacientes están menos expuestos a infecciones que los sanos, por unas mejores condiciones socio-sanitarias, con lo cual también pueden estar más protegidos frente a tóxicos, como la exposición al tabaco en infancia y adolescencia (Ramagopalan, 2011b). Nuestro objetivo no era estudiar el consumo de tabaco después de los 20 años de edad, y si sabemos que el tabaco empeora la enfermedad (Ebers, 2008; Sloka, 2009). Nuestro estudio apoya esta idea: los pacientes expuestos al tabaco o que fumaban antes de los 20 años, comenzaban antes con la enfermedad.

En los países del norte de Europa es frecuente el déficit de vitamina D. La luz solar y la dieta son las principales fuentes de vitamina D. Aunque en España hay suficiente radiación solar durante todo el año, hemos encontrado que los suplementos de vitamina D en la infancia y adolescencia, pueden prevenir el riesgo de sufrir E.M.

En Escocia, hay una campaña gratuita de suplementos de vitamina D en niños y gestantes (Shine on Scotland Campaign). Se espera conseguir alcanzar concentraciones de vitamina D de 100 nmol/L en los niños y gestantes, que podrían ahorrar €187.000
millones por año, en gastos directos de padecer EM, si se suplementara con vitamina D a los 363 millones de habitantes europeos (Grant, 2009). En Alemania se calcula que el ahorro sería de €37.500 millones anuales (Zittermann, 2009). Nuestros resultados también apoyan los efectos benéficos de los programas de suplementos vitamínicos en la infancia y adolescencia.

En nuestro conocimiento, es el único estudio en población española donde se han evaluado la ingesta de alimentos ricos en vitamina D en la infancia y adolescencia, para establecerlos como factores de riesgo o protección frente a la enfermedad. Los estudios previos realizados caso-control (Frutos-Alegría, 2002), sobre factores ambientales que tuvieran relación con la enfermedad, establecieron que el contacto con perros y ovejas, antes de los 15 años, eran factores de riesgo para desarrollar la enfermedad en la comarca de Alcoy (Alicante).

Los resultados de los estudios epidemiológicos, apoyan un efecto protector de la vitamina D. Aunque no se conoce exactamente el mecanismo de acción de la vitamina D en el riesgo de E.M., las evidencias existentes recomiendan prevenir su déficit.

5.3 HLA-DRB1*1501 y mes de nacimiento

En diversos estudios genéticos se ha demostrado que las variaciones alélicas en la región del HLA de clase II (principalmente en los genes del HLA-DR), representan el principal factor de riesgo para padecer E.M. Además, las interacciones genéticas entre los alelos parentales del HLA-DR, se consideran modificadoras del riesgo de padecer EM y de sus características clínicas. El haplotipo HLA-DRB1*1501, es el marcador genético que se ha asociado con un riesgo tres veces mayor de padecer E.M., en caucásicos occidentales. El momento en que la interacción genético-ambiental pudiera tener lugar es crucial. Como la asociación de E.M. y el mes de nacimiento es mayor en casos familiares, se apoya también una interacción genético-ambiental.

Nuestra población de pacientes a los que se realizó el genotipo es homogénea y similar en sus características epidemiológicas a otras poblaciones (Ramagopalan 2007, 2008 y 2000a, Romero-Pinel, 2010 y 2011). Nuestra cohorte de 491 pacientes de E.M. del Hospital Universitario 12 de Octubre esta formada por más mujeres que hombres (68% mujeres vs.32% varones), en una proporción 2:1. La edad media es de 41,7 (±10,9) años. El 66% de los pacientes tenían entre 30 y 50 años. La mayoría de los pacientes (62,3%) tienen la forma Recurrente-Remitente de la enfermedad, frente al 11,8% de formas progresivas. La edad de inicio de la enfermedad fue de 35,1 años (±12,64), la
EDSS de inicio de la enfermedad de 2,2 (±1,7) y la EDSS actual de 2,3 (±2,2), lo que indica que se trata de una cohorte con baja progresión de la enfermedad.

Encontramos 56 genotipos diferentes en los pacientes con EM, también presentes entre los controles sanos. El alelo HLA-DRB1*15 se encontró con mayor frecuencia en los pacientes con EM (35%) que en controles (17%) (p<0.001), como en otros estudios (Ramagopalan 2007). A diferencia de estudios anteriores (Romero-Pinell, 2011), aquellos pacientes que eran portadores del alelo DRB1*15 presentaron un E.D.S.S. menor (2.3) que aquellos que no lo portaban (2.6), incluso comparándolo con la E.D.S.S media de la población (2.5). Además, los pacientes monozigotos para DRB1*15 (n=2) presentaron una media de E.D.S.S de 1.5. Los pacientes de EM portadores del alelo DRB1*15 tienden a alcanzar un tiempo mayor de evolución sin discapacidad (E.D.S.S. <3) (15 ± 9 años vs. 12 ± 9 años en los no portadores, p=0.0043). No se hallaron diferencias en cuanto al sexo o la edad de inicio.

En nuestra cohorte, no existe asociación entre el principal alelo de susceptibilidad a EM y la peor evolución de la enfermedad, pese a que en la población enferma su frecuencia es significativamente mayor que en la población sana. Este alelo, en cambio, se encuentra en un 8% asociado al alelo protector DR7, lo cual podría explicar los resultados de mejor evolución de los pacientes portadores de HLA-DRB1*15.

HLA-DRB1*01 y *10 protegen de E.M., pero sólo en presencia de HLA-DRB1*15 (Ramagopalan, 2007). Lo que si está claro es que su frecuencia es significativamente mayor en los pacientes (más del doble), que en los controles sanos, lo que si coincide con todos los estudios al respecto. Es más, se ha observado una mayor prevalencia de HLA-DRB1*15 en la raza caucásica, y sobre todo en mujeres con E.M. (Kragt, 2009). Esto último puede ser debido a los cambios de hábitos: protectores solares, obesidad y menor actividad al aire libre (Yetley, 2008).

Recientemente, se ha publicado (Ramagopalan, 2009b) que hay una asociación entre el mes de nacimiento, el genotipo HLA-DRB1 y el riesgo de E.M. En un estudio con 4.834 pacientes con E.M., 4.056 controles y parientes no afectos de Canadá, Suecia y Noruega, se realizó el genotipado para el gen del HLA-DRB1. Los pacientes con E.M. portadores del HLA-DRB1*15 habían nacido más en Abril (p=0.004), comparados con los pacientes que no portaban HLA-DRB1*15. Menos pacientes con E.M. portadores del HLA-DRB1*15 habían nacido en Noviembre, comparados con los pacientes no portadores. Estas diferencias no se observaron en controles o familiares no afectos.
5. DISCUSIÓN.

Esto apoya la teoría de que debe haber una interacción entre un factor de riesgo estacional, con un locus cercano al HLA-DRB1*15, durante la gestación, o cerca del postparto.

Nuestros resultados apoyan la hipótesis, ya que los pacientes con E.M. que eran portadores del alelo HLA-DRB1*15 (10,3%), comparados con los pacientes no portadores de HLA-DRB1*15 (3,8%), significativamente más pacientes nacían en Diciembre (p=0,0185). Lo anterior también se confirmaba al comparar los nacimientos en controles sanos portadores de HLA-DRB1*15 (1%), frente a los no portadores de HLA-DRB1*15 (10,3%). El mes de nacimiento en Diciembre, era significativamente más frecuente (p=0,028) en los controles sanos, no portadores del HLA-DRB1*15.

Finalmente, al comparar los portadores de HLA-DRB1*15, entre los pacientes (10,3%) y controles (1%), nacían más en Diciembre los pacientes, que los controles sanos, significativamente (p=0,036).

Una posible explicación sería que, una proporción alta de los genes que regulan la proteína viral EBNA-3, son regulados por la vitamina D. El virus de Epstein-Barr (VEB) potencia el déficit de vitamina D (Disanto, 2011), bloqueando los efectos de la vitamina D. Un factor ambiental infeccioso, como es el VEB, pudiera interaccionar tras el nacimiento, en las personas más susceptibles al déficit de vitamina D, como son los portadores del HLA-DRB1*15. Recordamos que la presencia del alelo HLA-DRB1*15, es el doble más frecuente entre los pacientes con E.M., que en la población general, y que se recomienda favorecer la infección por VEB en la infancia (Simon, 2011), según la teoría higiénica.

También se cree que los niveles de vitamina D, pueden actuar como un factor de protección frente a las infecciones respiratorias, sobre todo la infección por el VEB, a través de la síntesis de catelicidina humana (IL-37). Se ha encontrado una asociación entre los meses en que los niveles de vitamina D están más bajos, y el pico de aquellas enfermedades relacionadas con el VEB, como el linfoma de Hodgkin y la mononucleosis infecciosa (Grant, 2010). El efecto de la infección del VEB en el riesgo de E.M. puede ser modificado por el nivel de vitamina D en el huesped (Ascherio, 2007) o por la coinfección de un agente que incrementa el riesgo de E.M. (es más frecuente esta coinfección en áreas de riesgo alto de E.M.) o disminuye el riesgo de E.M (es menos frecuente esta coinfección en áreas de bajo riesgo).

Nuevas preguntas se añaden a la vista de nuestros resultados y sería interesante confirmar si los pacientes portadores de HLA-DRB1*15, nacidos en invierno, presentaron procesos infecciosos similares en etapas tempranas. Nuevas líneas de investigación se
han abierto recientemente sobre la flora macrobiota, que podría explicar estas diferencias: los pacientes tratados en etapas tempranas con antibióticos, pueden ver alterada su flora macrobiota.

En conclusión, nuestra población de pacientes con E.M. ha nacido más en invierno (Enero), la dieta rica en vitamina D y con suplementos vitamínicos antes de los 20 años protegería el riesgo de padecer E.M., y el único haplotipo que establece susceptibilidad a padecer E.M. (HLA-DRB1*15), y que modifica su expresión por la vitamina D, se asocia a un mayor número de nacimientos, de los pacientes portadores del mismo, en Diciembre.

La hipótesis de que el déficit de vitamina D en la infancia, alteraría la expresión de HLA-DRB1 en el timo, con una pérdida de tolerancia en el timo y el aumento de autoinmunidad en etapas posteriores, parece confirmarse (Ramagopalan, 2009a; Handunnetthi, 2010). Añadimos con nuestro estudio que, aparte del déficit de vitamina D, se demuestra la interacción de otro factor o factores ambientales invernales en el HLA-DRB1*15.

Entre las conclusiones que pueden deducirse de este trabajo están que la radiación solar (como sinónimo de niveles de vitamina D) en la época de la gestación, no está tan relacionado con el riesgo de padecer E.M., como en principio se podía deducir por la literatura, y que en cambio, la dieta rica en vitamina D en la infancia y adolescencia, parece proteger del riesgo de padecer E.M. En cambio, el nacimiento de los pacientes en invierno puede ser un factor de riesgo para padecer E.M., ya que los pacientes portadores del HLA-DRB1*15, que modifica su expresión por la vitamina D, presentan un mayor número de nacimientos en Diciembre.

La interacción de un factor genético, como es el HLA-DRB1*15, con factores ambientales, como son los niveles de vitamina D, según la radiación solar y dieta, se asocian en etapas tempranas de la vida (desde el nacimiento hasta la adolescencia), al desarrollo de EM.
6. CONCLUSIONES.
6. CONCLUSIONES.

1.- Los nacimientos de pacientes con E.M. son mayores en Enero y menores en Febrero. El primer trimestre de embarazo en Junio, Julio y Agosto parece proteger, ya que nacen menos en Febrero, pero no explicaría más nacimientos en Enero.

2.- La ingesta de suplementos vitamínicos, pescado y huevos en la lactancia e infancia, la vacunación en la infancia y no tomar leche bovina, protegen del riesgo de padecer E.M.

3.- El mes de nacimiento en Diciembre, el genotipo HLA-DRB1*15 y el riesgo de presentar E.M. están asociados. Nuestro estudio apoya que el HLA-DRB1*15 es el lugar de la interacción gen-ambiental.
7. RESUMEN
7. RESUMEN

7.1 Introducción

Las concentraciones de vitamina D en el primer trimestre de la gestación, pueden ser importantes en el desarrollo del sistema nervioso central. Durante el desarrollo embrionario, los receptores de vitamina D se expresan en el neuroepitelio y más tarde, en áreas periventriculares.

El riesgo para padecer E.M. está incrementado en los nacidos a finales de primavera, comparados con los nacidos a finales de otoño, en los países del norte de Europa y Canadá, y al contrario en el hemisferio sur (Willer, 2005, Staples, 2010). El mecanismo no está claro, pero se piensa que las variaciones en la radiación ultravioletas, infecciones u otros factores pueden contribuir al desarrollo de la enfermedad, pero fundamentalmente, el déficit de vitamina D materno en el primer y segundo trimestre de la gestación.

Varios estudios en cohortes prospectivas, han confirmado el riesgo que añadía el déficit de vitamina D al desarrollo de E.M. En una cohorte de 257 militares norteamericanos (Munger, 2006), se determinaron los niveles de vitamina D en el tiempo, y se observó un efecto protector frente a la E.M. en aquellos que tenían niveles altos de vitamina D (>100 nmol/l), frente a los que tenían niveles bajos (<75 nmol/l). El efecto era más marcado para los niveles medidos antes de los 20 años de edad, sugiriendo como los primeros años de vida, son claves para el desarrollo de susceptibilidad a la enfermedad.

En otro estudio con 200.000 enfermeras americanas, se determinaron los niveles de vitamina D a través de cuestionarios semicuantitativos de dieta y suplementación. Estos resultados se validaron con muestras sanguíneas, repetidas cada 4 años en 300 participantes. Las mujeres que tomaban suplementos de vitamina D (a partir de 400 UI), tenían una incidencia de E.M. un 41% menor, que las que no lo tomaban (Munger, 2010; Ascherio, 2010).

Los estudios de la Asociación Genoma-Wide, sólo explican el 50% del riesgo de herencia de E.M. Podrían ser claves la epistasia y epigenética en el HLA. El estudio canadiense, descubrió una epistática interacción entre los haplotipos del HLA-DRB1. Un estudio con parejas avunculares demostró que, la frecuencia de HLA-DRB1*15 era más bajo en la primera generación de mujeres afectas, comparada con la segunda generación de mujeres afectas. La frecuencia de HLA-DRB1*15 permanece sin cambios en hombres.
afectos. Esta observación parece confirmar que el HLA está implicado en el incremento de la incidencia de E.M. en mujeres, y que el HLA es el lugar de la interacción genético-ambiental (Chao, 2009).

Un estudio reciente realizado en una cohorte de 380 pacientes españoles con E.M., ha encontrado que el HLA-DRB15*01 si está asociado con la E.M., comparado con controles sanos no relacionados y que el HLA-DRB15*01 y 04 están relacionados con peor pronóstico en la progresión de la discapacidad (Romero-Pinel, 2011).

Otro estudio muestra como la vitamina D interacciona con el locus mayor de histocompatibilidad, que determina susceptibilidad a E.M (HLA-DRB1*1501). (Ramagopalan 2009a). El mismo grupo (Ramagopalan, 2009b) demostró que los pacientes con E.M. portadores del HLA-DRB1*15, habían nacido más en Abril (p=0.004), comparados con los pacientes que no portaban HLA-DRB1*15. Menos pacientes con E.M., portadores del HLA-DRB1*15, habían nacido en Noviembre, comparados con los pacientes no portadores. Estas diferencias no se observaron en controles o familiares no afectos.

Esto apoya la teoría de que debe haber una interacción, entre un factor de riesgo estacional, con un locus cercano al HLA-DRB1*15 durante la gestación, o cerca del postparto.

7.2 Justificación e Hipótesis

El mes de nacimiento puede ser un indicador del déficit de vitamina D materno, como factor de riesgo en el desarrollo de E.M. en la descendencia. Asimismo, sabemos por los estudios epidemiológicos, que el déficit de vitamina D en el periodo de la infancia y adolescencia, es crucial en el riesgo de desarrollar E.M.

Como también sabemos que la vitamina D interacciona con el locus mayor de histocompatibilidad, que determina susceptibilidad a E.M (HLA-DRB1*1501), queremos investigar si el mes de nacimiento, como indicador de déficit de vitamina D, está relacionado con ser portador de dicho locus.

7.3 Objetivos del estudio

1. Investigar el mes del nacimiento de los pacientes con Esclerosis Múltiple, en varias poblaciones españolas.

2. Investigar si esas diferencias ambientales, son modificadas por los factores dietéticos, hábitos tóxicos y vacunación, en los pacientes hasta los 20 años y en sus madres hasta la gestación de los mismos.
3. Investigar si existe una asociación entre el mes de nacimiento y la presencia de HLA-DRB1*1501.

7.4 Pacientes, Material y Métodos

Mes de nacimiento y riesgo de E.M

Para el estudio del mes de nacimiento, se obtuvieron los datos de 4.886 pacientes con E.M. procedentes de 11 hospitales de España. Estos datos estaban registrados en las Bases de Datos de las consultas especializadas, y Unidades de Enfermedades Desmielinizantes de dichos centros.

La distribución de los pacientes por centros era la siguiente:

- 2.230 eran de Madrid (40º20N de latitud), procedentes de las Bases de Datos de las consultas de E.M. de los siguientes hospitales: Hospital Universitario Príncipe de Asturias de Alcalá de Henares, Hospital Universitario Gregorio Marañón, Hospital Universitario de Leganés, Hospital Universitario de La Paz, Hospital Universitario Ramón y Cajal y Hospital Universitario 12 de Octubre. Los pacientes incluidos en esas bases había sido diagnosticados de E.M. por los criterios de Poser y las muestras eran homogéneas. Las variables que nos aportaron eran demográficas: fecha de nacimiento y sexo, no recibiendo datos de otro tipo, en virtud de la Ley de Protección de Datos.

- 212 pacientes procedentes del Complejo Hospitalario Universitario de Vigo (Pontedvedra) (44º15N de latitud). Los criterios de inclusión y variables eran los mismos que en el primer grupo.

- 1.157 pacientes procedentes del Hospital Regional Universitario Carlos Haya de Málaga (36º43N de latitud). Los criterios de inclusión y variables eran los mismos que en el primer grupo.

- 623 pacientes procedentes del Hospital Universitario Donostia-San Sebastián (43º19N de latitud). Los criterios de inclusión y variables eran los mismos que en el primer grupo.

- 390 pacientes procedentes del Hospital Universitario Mutua de Terrasa (Barcelona) (41º33N de latitud). Los criterios de inclusión y variables eran los mismos que en el primer grupo.

- 274 pacientes procedentes del Hospital Insular de Gran Canaria y Hospital Universitario de Tenerife (28º15N de latitud). Los criterios de inclusión y variables eran los mismos que en el primer grupo.

Se compararon los meses de nacimiento de la muestra de pacientes con los nacimientos mensuales locales en los mismos periodos (Instituto Nacional de Estadística). Estos datos son de acceso libre a través de la página web del Instituto Nacional de Estadística. Se pidió ayuda al Servicio de Epidemiología del H. Carlos III de Madrid (Dr. Jesús de Pedro), para el manejo de los datos.

Pacientes y controles sanos para el estudio de hábitos dietéticos y riesgo de Esclerosis Múltiple.

También se han incluido los resultados de las encuestas presenciales (ver Anexo III), sobre alimentación y hábitos de vida a 491 pacientes de E.M. de nuestro centro. Asimismo se han realizado las mismas encuestas que a los pacientes, a 491 controles sanos, acompañantes de otros pacientes, que acudían a las consultas ambulatorias de dichos centros, pareados por edad y sexo. Los cuestionarios estaban validados, según los realizados por el grupo de Ascherio y colaboradores. Los pacientes fueron informados y firmaron el C.I. (ver Anexo II). Los controles sanos fueron informados y aceptaron verbalmente formar parte del estudio.

Las dos poblaciones estudiadas de pacientes y controles sanos son semejantes. Hay que tener en cuenta el sesgo del recuerdo y el sesgo de recordar cuando uno ya está enfermo, a la hora de valorar los datos reflejados en estas encuestas, en las cuales preguntábamos sobre hábitos alimentarios y de vida antes de los 20 años, en los encuestados y sus madres.

Pacientes y controles sanos para el estudio del mes de nacimiento y HLA-DRB1.

Se incluyeron 100 pacientes diagnosticados de E.M. en nuestro centro, Hospital Universitario 12 de Octubre de Madrid, y 226 pacientes con E.M. procedentes del Hospital Regional Universitario Carlos Haya de Málaga, a los que se realizaron tipajes HLA-DRB1. Los pacientes que aceptaron participar en el estudio, fueron incluidos de forma consecutiva, según acudían a las visitas médicas, entre los meses de Febrero y
Marzo del año 2010. Todos los pacientes fueron debidamente informados y firmaron los correspondientes consentimientos informados (ver Anexo IV).

El grupo control (n=350) donde se realizaron los tipajes de HLA-DRB1 proviene de la base de receptores de trasplante, del Servicio de Inmunología del Hospital 12 de Octubre de Madrid. Este estudio fue aprobado por el Comité Ético local y el del Hospital Regional Universitario Carlos Haya de Málaga. Los pacientes fueron informados y firmaron los Consentimientos Informados correspondientes.

Variables en estudio:

- Variables demográficas y del tipo de enfermedad, mes de nacimiento del paciente, edad al inicio de la enfermedad y nivel en la Expanded Disability Status Scale (E.D.S.S., ver Anexo V), al inicio de la enfermedad.
- Cálculo de la vitamina D en la dieta.
 ➤ Cálculo de la ingesta de vitamina D en alimentos (leche entera, huevos y pescado) según porciones y frecuencia, calculando la suma total y parcial de vasos de leche diarios, en el paciente hasta los 20 años y en su madre.
 ➤ Cálculo de suplementos vitamínicos de vitamina D diarios, durante gestación (0, <400 UI, >400 UI, 400 UI). La cantidad que suelen tener los suplementos vitamínicos es de 400 UI.
 ➤ Cálculo de suplementos vitamínicos de vitamina D diarios, durante la infancia y adolescencia (0, <400 UI, >400 UI, 400 UI). La cantidad que suelen tener los suplementos vitamínicos es de 400 UI.
- Vacunación en la infancia. Las variables eran: si/no.
- Lactancia materna. Las variables eran: si/no.
- Hábito tabáquico en el paciente, familia y madre del paciente. Las variables eran: si/no y cantidad de cigarrillos/día.
- Consumo de café antes de los 20 años de edad. Las variables eran: si/no.

Las variables que recogimos en la base de datos para el estudio del mes de nacimiento y HLA-DRB1, fueron:

- Número de historia del archivo del hospital
- Fecha de nacimiento
- Sexo, codificado como varón y mujer
- Tipo de enfermedad, codificado como SCA; EMRR, Esclerosis Múltiple Secundaria Progresiva con y sin reagudizaciones (EMSP) y Esclerosis Múltiple Primaria Progresiva (EMPP).

- Edad de inicio de la enfermedad.

- E.D.S.S. al inicio de la enfermedad, variable numérica de 0 a 9.

- E.D.S.S. en el momento de la recogida de datos, variable numérica de 0 a 9.

- Tipaje de HLA-DRB1 y subtipos, que son sucesivamente HLA-DRB1*1501, HLA-DRB1*1502, HLA-DRB1*1503, HLA-DRB1*1504 hasta HLA-DRB1*1516.

Los datos recogidos de los controles fueron:

- Número de historia del archivo del hospital.

- Fecha de Nacimiento.

- Sexo, codificado como varón y mujer.

- Tipaje de HLA-DRB1 y subtipos, que son sucesivamente HLA-DRB1*1501, HLA-DRB1*1502, HLA-DRB1*1503, HLA-DRB1*1504 hasta HLA-DRB1*1516.

7.5 Resultados

Los resultados obtenidos comparando los meses de nacimiento de la población general, con el mes de nacimiento de los 4.886 pacientes, muestran una mayor predisposición estadísticamente significativa para nacer en el mes de Enero y menos en Febrero. Hemos estudiado también, si en lugar de la asociación con un mes de nacimiento, fuera con una estación del año, y no hemos encontrado tal asociación.

Nuestra cohorte de 491 pacientes de E.M. del Hospital Universitario 12 de Octubre esta formada por más mujeres que varones (68% mujeres vs.32% varones), en una proporción 2:1. La edad media es de 41,7 (±10,9) años. El 66% de los pacientes tienen entre 30 y 50 años. La mayoría de los pacientes (62,3%) tienen la forma Recurrente-Remitente de la enfermedad, frente al 11,8% de formas progresivas (EMSP y EMPP). La edad media de inicio de la enfermedad fue de 35,1 años (±12,64), la EDSS media del inicio de la enfermedad es de 2,2 (±1,7) y la EDSS media actual es de 2,3 (±2,2), lo que indica que se trata de una cohorte con baja progresión de la enfermedad. Es decir, en líneas generales, nuestra cohorte es similar a otras cohortes españolas (Romero-Pinel 2011 y 2012).

La ingesta de suplementos vitamínicos, pescado y huevos en lactancia e infancia, la vacunación en la infancia, no tomar leche bovina, fumar antes de los 20 años y ser
fumador pasivo, protegen del riesgo de padecer E.M. Pero entre los pacientes que fumaban, la edad de inicio de la enfermedad era inferior en 3 años, frente a los pacientes que no fumaban antes de los 20 años. La ingesta de embutidos en la infancia y adolescencia es un factor de riesgo para el desarrollo de E.M. En nuestro estudio no hay diferencias en recibir lactancia materna, ni en el consumo de café, entre pacientes y controles sanos.

En nuestra cohorte, no existe una asociación entre el principal alelo de susceptibilidad a la EM (HLA-DRB1*15) y la peor evolución de la enfermedad.

Comparados los pacientes con E.M. que eran portadores del alelo HLA-DRB1*15 (10,3%) frente a los pacientes no portadores de HLA-DRB1*15 (3,8%), significativamente más pacientes nacían en Diciembre (p=0,0185). Al comparar los portadores de HLA-DRB1*15 entre los pacientes (10,3%) y controles (1%), nacían más en Diciembre los pacientes que los controles sanos, de forma estadísticamente significativa (p=0,036).

7.6 Discusión

Mes de nacimiento y riesgo de E.M

Las mayores dificultades metodológicas que encontramos para realizar este estudio fueron las diferencias de edades entre las poblaciones estudiadas, por lo que para comparar con la población general, se aceptó un rango de edad, que incluyera el 90% de los pacientes.

Elegimos los diferentes centros en virtud de la diferente latitud y el número de pacientes. Los tres centros del norte de España tenían aproximadamente el mismo número de pacientes que los de Madrid y Málaga, por lo que no recabamos más información de centros del sur de España.

El riesgo para padecer E.M. está incrementado en los nacidos a finales de primavera, comparados con los nacidos a finales de otoño, en los países del norte de Europa y Canadá. El mecanismo no está claro, pero se cree que las variaciones en la radiación ultravioletas, infecciones u otros factores pueden contribuir.

En nuestro estudio, se demuestra que en España son mayores los nacimientos de pacientes con E.M. en Enero, y menores en Febrero. El primer trimestre de embarazo en Junio, Julio y Agosto parece proteger, ya que nacen menos niños en Febrero, pero no explicaría más nacimientos en Enero, a no ser que exista un factor ambiental invernal que justifique este mayor número de nacimientos. Es decir, los pacientes con E.M. nacidos en el mes de Enero, han presentado en los 2 primeros trimestres de su gestación, la mayor
radiación solar posible durante todo el año (de Mayo a Octubre). Debe haber un factor ambiental independiente de la radiación solar, que lo justifique.

Es llamativo que en Málaga, Madrid y la muestra conjunta, el mes de menos nacimientos de pacientes con E.M. sea Febrero. Teniendo en cuenta que los nacidos en Febrero, desarrollaron el primer trimestre de la gestación de Junio a Agosto, se confirma que la mayor radiación en el primer trimestre de la gestación protege del riesgo de desarrollar E.M. En Madrid era más frecuente el nacimiento en Noviembre, lo cual no sería explicado por una menor radiación solar, durante los meses de Marzo a Mayo, sino por un factor ambiental en otoño-invierno.

El único estudio que relaciona el mes de nacimiento con la latitud, radiación solar en lugar de nacimiento y edad de inicio de la enfermedad, se realizó en la cohorte nacional de 967 veteranos del Multiple Sclerosis Surveillance Registry norteamericano, llegando a la conclusión de que los pacientes con E.M.R.R., que nacieron en invierno y cuyo lugar de nacimiento era en áreas de baja radiación solar, tenían un comienzo de la enfermedad 2.8 años antes que los que nacieron en otra estación, y en áreas de radiación solar media-alta (p=0.02) (McDowell, 2010). Este mismo grupo de estudio encontró que los pacientes con Esclerosis Múltiple Remitente-Recurrente, que residían en áreas de baja exposición solar, y habían tenido baja exposición solar, entre los 6-15 años de edad, iniciaron la enfermedad 2.1 años antes que los demás.

Este estudio apoya en parte nuestros hallazgos: el nacimiento de los pacientes en invierno.

Hábitos de vida y dietéticos y riesgo de E.M.

Como ya se ha comentado con anterioridad, el periodo en el cual actúa el déficit de vitamina D, como factor de riesgo de desarrollo de E.M., es fundamental. Los efectos de la vitamina D en la infancia y adolescencia se basan en varios estudios epidemiológicos. Se sabe que los emigrantes de Norte de Europa a Sudáfrica tienen menor riesgo de E.M., si lo hacen antes de los 15 años. Asimismo, la baja exposición solar y los bajos niveles de vitamina D, durante la adolescencia, aumentan el riesgo de E.M., ya que en este periodo se desarrolla el timo. Numerosos estudios clínicos y en modelos de experimentación (E.A.E.), apoyan la idea de que los factores dietéticos juegan un papel en el riesgo de desarrollar E.M., al igual que el tabaco, la infección por virus de Epstein-Barr y los niveles de vitamina D por la radiación solar. Pero a diferencia de otros factores ambientales, la dieta se puede modificar y de esta forma, cambiar el riesgo de padecer E.M.
Desde el punto de vista epidemiológico, es muy difícil estudiar los hábitos dietéticos, salvo que se utilicen cuestionarios muy amplios, que nos son el objeto de este estudio y crean más variables de confusión. Nuestras dos poblaciones estudiadas de pacientes y controles sanos son semejantes. Hay que tener en cuenta el sesgo del recuerdo y el sesgo de recordar cuando uno ya está enfermo, a la hora de valorar los datos reflejados en estas encuestas, en las cuales preguntábamos sobre hábitos dietéticos y de vida antes de los 20 años, en los encuestados y sus madres. El gran número de pacientes y controles da potencia al estudio.

Nuestro estudio encuentra que la ingesta de suplementos vitamínicos, pescado y huevos en lactancia e infancia y la vacunación en la infancia, parecen ser factores protectores para padecer E.M.

Los estudios de Ascherio ya confirmaron que las mujeres que tomaban suplementos de vitamina D (a partir de 400 UI), tenían una incidencia 41% menor de padecer E.M., que las que no lo tomaban (Munger, 2004; Munger, 2010; Ascherio, 2010), al igual que nuestro estudio. Otros estudios caso-control no han encontrado esta asociación, cuando en lugar de medir los suplementos de vitamina D, tenían en cuenta los niveles séricos de vitamina D (Soilu-Hanninen, 2008) o, sólo se confirmaba esta asociación, en mujeres (Kragt, 2009).

Los estudios ecológicos indican que la ingesta de pescado es un factor protector de E.M. (Lauer, 2006). Dos estudios caso-control confirmaron un factor protector de la dieta rica en pescado en ambos géneros, sobre todo en la adolescencia (Kampman, 2007), o por lo menos, en mujeres (Ghadirian, 1998). Un estudio caso-control demostró que las grasas y proteínas de animales no marinos, eran un factor de riesgo para E.M. (Ghadirian, 1998). Nuestro estudio parece sugerir que la ingesta de embutidos en la infancia y adolescencia es un factor de riesgo para el desarrollo de E.M. Varios estudios ecológicos han demostrado que la carne (Lauer, 1994) y especialmente la de cerdo (Nanji, 1986) y la de carne ahumada y salchichas ahumadas (Lauer, 2008), son factores de riesgo para el desarrollo de E.M.

En nuestro estudio, no hay diferencias en recibir lactancia materna ni el consumo de café, entre pacientes y controles sanos. En mayo del 2012, el grupo de Ascherio (Massa, 2012), no ha encontrado asociación entre el consumo de café y alcohol, y el riesgo de E.M., en la cohorte del Nurses’ Health Study, al igual que en nuestro estudio.

La ingesta de leche y derivados lácteos muestran una asociación ecológica con el riesgo de E.M. a una escala global (Lauer, 2006), o en países de gran extensión como es Estados Unidos (Lauer, 1994), la antigua Unión Soviética (Lauer, 1994) y Australia
(Butcher, 1986). Estos estudios no se han confirmado en regiones pequeñas (Ghadirian, 1998) o en estudios caso-control (Lauer, 1990). Es paradójico que la ingesta de leche bovina sea un factor de riesgo para desarrollar E.M., según nuestro estudio. Nuestro estudio evaluaba la ingesta de leche en infancia y adolescencia y un estudio reciente (Munger, 2011) en una cohorte prospectiva, ha encontrado que los pacientes con E.M. consumían más cantidad de leche que los controles sanos, durante la adolescencia, al igual que nosotros. No hicimos diferencias entre leche bovina o caprina, y si es pasteurizada o natural, ya que sólo dos pacientes y tres controles, tomaban leche de cabra en la infancia y la leche es pasteurizada en Madrid desde hace 40 años. La leche de cabra es la más parecida a la humana, y por lo mismo, menos antigénica, y la bovina puede inducir en modelos animales E.A.E. Por otra parte, la leche pasteurizada carece de la población de macrobiotas que pueden activar las células T reguladoras.

Una explicación biológica de porqué los derivados lácteos pueden ser un factor de riesgo de E.M., estriba en que la leche de vaca contiene grandes cantidades de grasas saturadas y la proteína butirofilínica de la leche, presenta mimetismo molecular con epitopos de las glicoproteínas de los oligodendrocitos de la mielina, que se ha demostrado que son unos de los candidatos a autoantígenos en E.M. (Guggenmos, 2004).

La cantidad de vitamina D que se necesita para tener unos niveles adecuados es de 1000 UI por día. La cantidad de vitamina D que hay en un vaso de leche es de 240 UI. Se necesitan 4 vasos de leche por día para alcanzar 1000 UI por día (Munger, 2010). Los resultados de los estudios de la cohorte de enfermeras americanas, demostraron que el riesgo relativo de desarrollar E.M. fue un 38% menor, en las hijas de las madres que tomaron de 2 a 3 vasos diarios de leche durante la gestación, frente a las que tomaban menos de 3 vasos mensuales (Mirzaei, 2011). Este estudio apoya la importancia de la ingesta de leche, en este caso en las madres durante la gestación, en la prevención del riesgo de padecer E.M.

Un estudio de 2010 de Ramagopalan, apoya nuestros resultados. Ellos no encontraron que la alergia infantil a la leche fuera un factor de riesgo para E.M. Estudiaron en el Canadian Collaborative Project on Genetic Susceptibility to Multiple Sclerosis (CCPGSMS) a 6.630 pacientes con E.M., y 2.509 controles parejas con alergia a la leche de vaca. No encontraron diferencias en el riesgo de desarrollar E.M. (Ramagopalan, 2010a). El mismo grupo ha estudiado que la ingesta de vitamina D durante la adolescencia, al contrario de lo que se pensaba, no reduce el riesgo de
desarrollar E.M. y que, en cambio, la ingesta de leche entera aumenta dicho riesgo (Ebers, 2009).

Existen diferencias en el consumo de tabaco entre los pacientes y controles sanos. Los controles sanos fumaban más, antes de los 20 años, y también fumaban más en su presencia. No existían diferencias en el consumo del tabaco en las madres, durante la gestación de los pacientes y controles sanos. Entre los pacientes que fumaban, la edad de inicio era inferior hasta 2,8 años, en los que fumaban antes de los 20 años, y de 3 años en los que habían sido fumadores pasivos antes de esa edad. La edad de inicio de la enfermedad, no se vio afectada por el consumo de tabaco, durante la gestación de la madre. Se ha demostrado que el tabaco aumenta la progresión de la discapacidad en los pacientes con E.M., aunque un estudio reciente revela, que la dieta rica en pescado mejora el curso de la enfermedad, independientemente del consumo de tabaco (Pittas F, 2009).

El menor consumo de tabaco, en los pacientes y sus familiares antes de los 20 años, puede ser explicada por la teoría higiénica, que estipula que los pacientes están menos expuestos a infecciones que los sanos, por unas mejores condiciones socio-sanitarias, con lo cual también pueden estar más protegidos frente a tóxicos, como la exposición al tabaco en infancia y adolescencia (Ramagopalan, 2011b). Nuestro objetivo no era estudiar el consumo de tabaco después de los 20 años de edad, y si sabemos que el tabaco empeora la enfermedad (Ebers, 2008; Sloka, 2009). Nuestro estudio apoya esta idea: los pacientes expuestos al tabaco o que fumaban antes de los 20 años, comenzaban antes con la enfermedad.

En los países del norte de Europa es frecuente el déficit de vitamina D. La luz solar y la dieta son las principales fuentes de vitamina D. Aunque en España hay suficiente radiación solar durante todo el año, hemos encontrado que los suplementos de vitamina D en la infancia y adolescencia, pueden prevenir el riesgo de sufrir E.M..

En nuestro conocimiento, es el único estudio en población española donde se han evaluado la ingesta de alimentos ricos en vitamina D en la infancia y adolescencia, para establecerlos como factores de riesgo o protección frente a la enfermedad.

Los resultados de los estudios epidemiológicos, apoyan un efecto protector de la vitamina D. Aunque no se conoce exactamente el mecanismo de acción de la vitamina D en el riesgo de E.M., las evidencias existentes recomiendan prevenir su déficit.
HLA-DRB1*1501 y mes de nacimiento

En diversos estudios genéticos se ha demostrado que las variaciones alélicas en la región del HLA de clase II (principalmente en los genes del HLA-DR), representan el principal factor de riesgo para padecer E.M. Además, las interacciones genéticas entre los alelos parentales del HLA-DR, se consideran modificadoras del riesgo de padecer EM y de sus características clínicas. El haplotipo HLA-DRB1*1501, es el marcador genético que se ha asociado con un riesgo tres veces mayor de padecer E.M., en caucásicos occidentales. El momento en que la interacción genético-ambiental pudiera tener lugar es crucial.

Como la asociación de E.M. y el mes de nacimiento es mayor en casos familiares, se apoya también una interacción genético-ambiental.

Nuestra población de pacientes a los que se realizó el genotipo es homogénea y similar en sus características epidemiológicas a otras poblaciones (Ramagopalan 2007, 2008 y 2000a, Romero-Pinel, 2010 y 2011). Nuestra cohorte de 491 pacientes con E.M. del Hospital Universitario 12 de Octubre esta formada por más mujeres que hombres (68% mujeres vs.32% varones), en una proporción 2:1. La edad media es de 41,7 (±10,9) años. El 66% de los pacientes tenían entre 30 y 50 años. La mayoría de los pacientes (62,3%) tienen la forma Recurrente-Remitente de la enfermedad, frente al 11,8% de formas progresivas. La edad de inicio de la enfermedad fue de 35,1 años (±12,64), la EDSS de inicio de la enfermedad de 2,2 (±1,7) y la EDSS actual de 2,3 (±2,2), lo que indica que se trata de una cohorte con baja progresión de la enfermedad.

Encontramos 56 genotipos diferentes en los pacientes con EM, también presentes entre los controles sanos. El alelo HLA-DRB1*15 se encontró con mayor frecuencia en los pacientes con EM (35%) que en controles (17%) (p<0.001), como en otros estudios (Ramagopalan 2007). A diferencia de estudios anteriores (Romero-Pinel, 2011), aquellos pacientes que eran portadores del alelo DRB1*15 presentaron un EDSS menor (2.3) que aquellos que no lo portaban (2.6), incluso comparándolo con la EDSS media de la población (2.5). Además, los pacientes monozigotos para DRB1*15 (n=2) presentaron una media de EDSS de 1.5. Los pacientes de EM portadores del alelo DRB1*15 tienden a alcanzar un tiempo mayor de evolución sin discapacidad (EDSS <3) (15 ± 9 años vs. 12 ± 9 años en los no portadores, p=0.0043). No se hallaron diferencias en cuanto al sexo o la edad de inicio.

En nuestra cohorte, no existe asociación entre el principal alelo de susceptibilidad a EM y la peor evolución de la enfermedad, pese a que en la población enferma su
frecuencia es significativamente mayor que en la población sana. Este alelo, en cambio, se encuentra en un 8% asociado al alelo protector DR7, lo cual podría explicar los resultados de mejor evolución de los pacientes portadores de HLA-DRB1*15.

Recientemente, se ha publicado (Ramagopalan, 2009b) que hay una asociación entre el mes de nacimiento, el genotipo HLA-DRB1 y el riesgo de E.M. En un estudio con 4.834 pacientes con E.M., 4.056 controles y parientes no afectos de Canadá, Suecia y Noruega, se realizó el genotipado para el gen del HLA-DRB1. Los pacientes con E.M. portadores del HLA-DRB1*15 habían nacido más en Abril (p=0.004), comparados con los pacientes que no portaban HLA-DRB1*15. Menos pacientes con E.M. portadores del HLA-DRB1*15 habían nacido en Noviembre, comparados con los pacientes no portadores. Estas diferencias no se observaron en controles o familiares no afectos.

Esto apoya la teoría de que debe haber una interacción entre un factor de riesgo estacional, con un locus cercano al HLA-DRB1*15, durante la gestación, o cerca del postparto.

Nuestros resultados apoyan la hipótesis, ya que los pacientes con E.M. que eran portadores del alelo HLA-DRB1*15 (10,3%), comparados con los pacientes no portadores de HLA-DRB1*15 (3,8%), significativamente más pacientes nacían en Diciembre (p=0,0185). Lo anterior también se confirmaba al comparar los nacimientos en controles sanos portadores de HLA-DRB1*15 (1%), frente a HLA-DRB1*15 no portadores (10,3%). El mes de nacimiento en Diciembre, era significativamente más frecuente (p=0,028) en los controles sanos, no portadores del HLA-DRB1*15.

Una posible explicación sería que, una proporción alta de los genes que regulan la proteína viral EBNA-3, son regulados por la vitamina D. El virus de Epstein-Barr (VEB) potencia el déficit de vitamina D (Disanto, 2011), bloqueando los efectos de la vitamina D. Un factor ambiental infeccioso, como es el VEB, pudiera interaccionar tras el nacimiento, en las personas más susceptibles al déficit de vitamina D, como son los portadores del HLA-DRB1*15. Recordamos que la presencia del alelo HLA-DRB1*15, es el doble más frecuente entre los pacientes con E.M., que en la población general, y que se recomienda favorecer la infección por VEB en la infancia (Simon, 2011), según la teoría higiénica.

También se cree que los niveles de vitamina D, pueden actuar como un factor de protección frente a las infecciones respiratorias, sobre todo la infección por el VEB, a través de la síntesis de catelicidina humana (IL-37). Se ha encontrado una asociación entre los meses en que los niveles de vitamina D están más bajos, y el pico de aquellas enfermedades relacionadas con el VEB, como el linfoma de Hodgkin y la mononucleosis
infecciosa (Grant, 2010). El efecto de la infección del VEB en el riesgo de E.M. puede ser modificado por el nivel de vitamina D en el huesped (Ascherio, 2007) o por la coinfección de un agente que incrementa el riesgo de E.M. (es más frecuente en áreas de riesgo alto de E.M.) o disminuye el riesgo de EM (es menos frecuente en áreas de bajo riesgo).

En conclusión, nuestra población de pacientes con E.M. ha nacido más en invierno (Enero), la dieta rica en vitamina D y con suplementos vitamínicos antes de los 20 años protege del riesgo de padecer E.M., y el único haplotipo que establece susceptibilidad a padecer E.M. (HLA-DRB1*15), y que modifica su expresión por la vitamina D, se asocia a un mayor número de nacimientos, de los pacientes portadores del mismo, en Diciembre.

La hipótesis de que el déficit de vitamina D en la infancia, alteraría la expresión de HLA-DRB1 en el timo, con una pérdida de tolerancia en el timo y el aumento de autoinmunidad en etapas posteriores, se sugieren en varios estudios (Ramagopalan, 2009a; Handunnetthi, 2010). Añadimos con nuestro estudio que, aparte del déficit de vitamina D, se sugiere la interacción de otro factor o factores ambientales invernales en el HLA-DRB1*15, al nacer más pacientes portadores en Diciembre.

Nuevas preguntas se añaden a la vista de nuestros resultados y sería interesante confirmar si los pacientes portadores de HLA-DRB1*15, nacidos en invierno, presentaron procesos infecciosos similares en etapas tempranas. Nuevas líneas de investigación se han abierto recientemente sobre la flora macrobiota, que podría explicar estas diferencias: los pacientes tratados en etapas tempranas con antibióticos, pueden ver alterada su flora macrobiota.

7.7 Conclusiones

1.- Los nacimientos de pacientes con E.M. son mayores en Enero y menores en Febrero.

2.- La ingesta de suplementos vitamínicos, pescado y huevos en lactancia e infancia, la vacunación en la infancia y no tomar leche bovina, protegen del riesgo de padecer E.M.

3.- El mes de nacimiento en Diciembre, el genotipo HLA-DRB1*15 y el riesgo de presentar E.M. están asociados. Nuestro estudio apoya que el HLA-DRB1*15 es el lugar de la interacción gen-ambiental.
8. SUMMARY
8. SUMMARY

8.1 Introduction

Vitamin D concentrations in the first trimester of pregnancy may be important in the development of the central nervous system. During embryonic development the vitamin D receptors are expressed in the neuroepithelium and later in periventricular areas.

The risk of developing Multiple Sclerosis (M.S.) is increased in those born in late spring, compared with the born in late autumn, in the northern European countries and Canada, unlike in the southern hemisphere (Willer, 2005, Staples, 2010). The mechanism is unclear, although it is thought that changes in ultraviolet radiation, infection, or other factors, may contribute to the development of the disease, but, fundamentally, the maternal vitamin D deficiency in the first and second trimester of pregnancy does.

Several prospective cohort studies have confirmed that the vitamin D deficiency is an added risk, in the development of M.S. In a cohort of 257 U.S. military (Munger, 2006), the levels of vitamin D at the time were determined, and a protective effect against M.S. was noted in those with higher vitamin D levels (> 100 nmol/l) compared to those with low levels (<75 nmol/l). The effect was more marked for the levels measured before becoming 20 years of age, suggesting that the first years of life are key to the development of disease susceptibility.

Women who took supplements of vitamin D (from 400 IU) had an incidence of MS 41 % lower than those not taking it (Munger, 2010; Ascherio, 2010).

Studies of Genome -Wide Association, explained only 50% of the inherited risk of MS. Could be key the epistasis and epigenetics in the HLA. The Canadian study, discovered an epistatic interaction between HLA - DRB1 haplotypes.

An avuncular pairs study showed that the frequency of HLA-DRB1*15 was lower in the first generation of female patients, compared with the second generation of women affected. The frequency of HLA-DRB1*15 remains unchanged in men affected. This observation seems to confirm that the HLA is implicated in increasing the incidence of M.S. in women, and that HLA is the site of genetic-environmental interaction (Chao 2009).

A recent study in a cohort of 380 Spanish patients with MS, found that HLA-DRB15*01 is associated with M.S., compared with unrelated healthy controls and that the HLA-DRB15*01 and 04 are associated with worse prognosis on the progression of disability (Romero -Pinel, 2011).
Another study shows that vitamin D interacts with the major histocompatibility locus that determines susceptibility to M.S. (HLA-DRB1*1501). (Ramagopalan 2009a). The same group (Ramagopalan, 2009b) showed that patients with M.S. carriers of HLA-DRB1*15, were born in April more often (p = 0.004) compared to patients who did not carry the HLA-DRB1*15. Fewer M.S. patients, carriers of HLA-DRB1*15, were born in November, compared to patients without. These differences were not observed in controls or relatives not affected.

This supports the theory that there must be an interaction between a seasonal risk factor and a locus closer to HLA-DRB1*15 during pregnancy, or about postpartum.

8.2 Rationale and Hypothesis.

The month of birth may be an indicator of maternal vitamin D deficiency as a risk factor in the development of M.S. in the offspring. We also know from epidemiological studies that vitamin D deficiency in the period of childhood and adolescence is crucial in the risk of developing M.S.

Since we know that vitamin D interacts with major histocompatibility locus, which determines susceptibility to MS (HLA-DRB1*1501), we want to investigate if the month of birth as an indicator of vitamin D deficiency is associated with being a carrier of that locus.

8.3 Objectives.

1. Investigate the month of birth of M.S. patients, in several Spanish populations.

2. Investigate whether these environmental differences are modified by dietary factors, toxic habits, and vaccination in patients up to 20 years old, and in their mothers until becoming gestational.

3. Investigate whether there is an association between month of birth and the presence of HLA-DRB1*1501.

8.4 Patients, Material and Methods

Month of birth and risk of M.S.

For the study of the month of birth, data were obtained of 4,886 M.S. patients from 11 hospitals in Spain. These data were recorded in the databases of specialized consultations and Demyelinating Diseases Unit of the centers.

We compared the months of birth of the patient sample with local monthly births in the same period (National Statistics Institute). These data are freely accessible through
the website of the National Statistics Institute. Help was sought from H. Epidemiology Service Carlos III of Madrid (Dr. Jesus de Pedro), to manage the data.

Patients and healthy controls for the study of dietary habits and risk of multiple sclerosis.

The results of the face surveys are also included (see Annex III), on food and life habits of 491 patients with MS of our center. There have also been the same amount of patients survees (491) than healthy controls survees, accompanying other patients attending outpatient clinics in these centers, matched for age and sex. The questionnaires were validated, as those made by the group of Ascherio et al. Patients were informed and signed the CI (see Annex II). Healthy controls were informed and agreed to participate in the study verbally.

The two study populations of patients and healthy controls are similar. Recall bias and recall bias when one is already ill have to be kept in mind, when assessing the data reflected in these survees, in which we asked about eating and life habits before the age of 20, in the responders and their mothers.

Patients and healthy controls for the study of the month of birth and HLA-DRB1.

We included 100 M.S. patients from our center, Hospital Universitario 12 de Octubre in Madrid, and 226 M.S. patients from the Carlos Haya Regional University Hospital of Malaga, who underwent HLA-DRB1 tipajes. Patients who agreed to participate in the study, were included consecutively as attending medical visits, between the months of February and March of 2010. All patients were fully informed and signed the corresponding informed consent (see Appendix IV).

The control group (n = 350) which HLA-DRB1 tipajes were performed comes from the base of transplant recipients of the Immunology Service, Hospital 12 de Octubre in Madrid. This study was approved by the local Ethical Committee and the Regional Hospital Universitario Carlos Haya, Malaga. Patients were informed and signed the corresponding Informed Consent.

Study variables:

- Demographic and disease type variables, month of birth of the patient, age at onset of disease and level in the Expanded Disability Status Scale (EDSS, see Annex V), at the onset of the disease.

- Calculation of vitamin D in the diet.
- Vaccination in childhood. The variables were: yes / no.

- Breastfeeding. The variables were: yes / no.

- Smoking status in the patient, family and patient mother. The variables were: yes / no and number of cigarettes / day.

- Coffee consumption before 20 years of age. The variables were: yes / no.

The database variables for birth month study and HLA -DRB1 were:

- File number of hospital history

- Date of birth

- Sex, coded as male and female

- Type of illness, coded as Clinical isolated syndrome (CIS), Relapsing-remitting Multiple Sclerosis (RRMS), secondary progressive MS with and without exacerbations (SPMS) and primary progressive M.S. (PPMS).

- Age of onset of the disease.

- E.D.S.S. the disease onset, number variable from 0 to 9.

- E.D.S.S. at the time of data collection, numeric variable from 0 to 9.

- Tipage of HLA-DRB1 and subtypes, which are successively HLA-DRB1*1501, HLA-DRB1*1502, HLA-DRB1*1503, HLA-DRB1*1504 to HLA-DRB1*1516.

Data collected from the controls were:

- File number of hospital history.

- Date of Birth.

- Sex, coded as male and female.

- Typing of HLA -DRB1 and subtypes, which are successively HLA-DRB1 * 1501, HLA -DRB1 * 1502, HLA-DRB1 * 1503, HLA- DRB1 * 1504 to HLA-DRB1 * 1516.

7.5 Results

The results obtained by comparing the month of birth in the general population, with the month of birth of the 4,886 patients, showed a statistically significant predisposition to be born in the month of January and less in February. We have also studied if, instead of the association with month of birth, there was one with a season of the year, and have not found such an association.
Our cohort of 491 patients from E.M. University Hospital 12 Octubre consists of more women than men (68 % women vs.32 % male) in a 2:1 ratio. The average age is 41.7 (± 10.9) years. The 66 % of patients are between 30 and 50 years old. Most of the patients (62.3%) have the relapsing-remitting form of the disease, compared to 11.8 % of progressive forms (PPMS and SPMS). The average age of onset of the disease was 35.1 (± 12.64), the mean EDSS onset of the disease is 2.2 (± 1.7), and the current mean EDSS is 2.3 (± 2.2), indicating that this is a cohort with low disease progression. That is to say, in general, our cohort is similar to other Spanish cohorts (Romero-Pinell 2011 and 2012).

The intake of vitamin supplements, fish and eggs in infancy and childhood, childhood immunization, no bovine milk, smoking before age 20 and passive smoking, all protect against risk of MS. But among patients who smoked, the age of onset of the disease was lower in 3 years compared to patients who did not smoke before age 20.

Sausage and cold meat intake in childhood and adolescence is a risk factor for developing M.S.. In our study, no differences in breast fed, or coffee consumption, between patients and healthy controls.

In our cohort, there is no association between the major allele of susceptibility to MS (HLA-DRB1*15) and the worse evolution of the disease.

Having compared E.M. patients who were carriers of HLA-DRB1*15 (10.3%) to patients without HLA-DRB1*15 (3.8 %), significantly more patients were born in December (p = 0.0185). When comparing the carriers of HLA-DRB1*15 among patients (10.3%) and controls (1%), more patients were born in December than healthy controls, statistically significant (p = 0.036).

7.6 Discussion

Month of birth and risk of M.S.

The major methodological difficulties found for this study were age differences in the populations studied, so to compare these with the general population, an age range that included 90% of patients was accepted.

Different centers were chosen under the different latitude and the number of patients. The three centers of northern Spain had about the same number of patients than those in Madrid and Malaga, so we did not collect more information in centers of southern Spain.
In our study, we demonstrate that in Spain there are a higher number of births of patients with M.S. in January, and lower in February. The first trimester of pregnancy in June, July and August seems to protect, as fewer children are born in February, but would not explain more births in January, unless there is an environmental factor that justifies the increasing of the number of winter births. I.e.: patients with M.S.. born in the month of January, presented in the first 2 trimesters of gestation, the largest possible solar radiation throughout the year (May to October). There must be an environmental factor independent of solar radiation, to justify it.

It is striking that in Malaga, Madrid and in the pooled sample, the month of fewer births of patients with MS is February. Given that those born in February developed their first trimester of gestation from June to August, it is confirmed that the higher radiation in the first trimester of pregnancy protects against the risk of developing MS. In Madrid it was more frequent the birth in November, which would not be explained by lower solar radiation during the months of March to May, but by an environmental factor in the autumn and winter.

The only study linking birth month with latitude, solar radiation in birthplace, and age of onset of the disease, was conducted in the national cohort of 967 veterans of the U.S. Multiple Sclerosis Surveillance Registry, concluding that RRMS patients, who were born in winter and whose place of birth was in low solar radiation, had a disease onset 2.8 years earlier than those born at another station, and in areas of medium to high solar radiation (p=0.02) (McDowell, 2010). This same study group found that patients with relapsing-remitting MS, who resided in areas with low sun exposure, and where sun exposure had been low, between 6-15 years of age, the disease began 2.1 years before the others. This study partly supports our findings: the birth of the patients in winter.

Lifestyle and dietary habits and risk of M.S.

As already mentioned before, the period in which vitamin D deficiency acts as a risk factor for development of M.S. is essential. The effects of vitamin D in childhood and adolescence are based on epidemiological studies.

From the epidemiological point of view, it is very difficult to study the dietary habits, unless very extensive questionnaires are used, which are not the subject of this study and create more confusing variables. Our two study populations of patients and healthy controls are similar. The large number of patients and controls empowers the study.
Our study finds that taking vitamin supplements, fish and eggs in infancy and childhood and childhood immunization, seem to be protective factors against developing M.S.

Ecological studies suggest that fish intake is a protective factor for MS (Lauer, 2006). Two case-control studies confirmed a protective role of fish diet in both genders, especially in adolescence (Kampman, 2007), or at least in women (Ghadirian, 1998) One case-control study showed that fats and proteins of non-marine animals, were a risk factor for M.S. (Ghadirian, 1998). Our study seems to suggest that the intake of cold meats in childhood and adolescence is a risk factor for the development of MS. Several ecological studies have shown that meat (Lauer, 1994) and especially pork (Nanji 1986) and smoked meat and smoked sausages (Lauer, 2008), are risk factors for developing M.S..

In our study, there are no differences in breast fed or coffee consumption, between patients and healthy controls. In May 2012, the group Ascherio (Massa, 2012), found no association between coffee and alcohol consumption and the risk of M.S., in the cohort of the Nurses' Health Study, as in our study.

The intake of milk and dairy products show an ecological association with MS risk on a global scale (Lauer, 2006) or in large countries like the United States (Lauer, 1994), the former Soviet Union (Lauer, 1994) and Australia (Butcher, 1986). These studies have not been confirmed in small regions (Ghadirian, 1998) or case-control studies (Lauer, 1990). Paradoxically bovine milk intake is a risk factor for developing MS, according to our study. Our study examined milk intake in infancy and adolescence, and a recent study (Munger, 2011) in a prospective cohort, found that patients with MS consumed more milk than healthy controls, during adolescence, like us.

A biological explanation why milk derivatives may be a risk factor of M.S. is that cow milk contains large amounts of saturated fat and milk protein butirofilinica presents molecular mimicry epitopes glycoproteins oligodendrocytes myelin, which has been shown to be one of the candidate autoantigen in M.S. (Guggenmos, 2004).

There are differences in tobacco consumption between patients and healthy controls. Healthy controls smoked more, before age 20, and also were more exposed to others' tobacco smoke. There were no differences in tobacco consumption in mothers during gestation of patients and healthy controls. Among patients who smoked, the age at onset was 2.8 years lower in those who smoked before age 20, and 3 years lower in those who were passive smokers before that age. The age of onset of the disease was not
affected by the consumption of tobacco during pregnancy of the mother. It has been shown that tobacco increases the progression of disability in patients with MS, although a recent study reveals that the fish diet improves the course of the disease, regardless of consumption of tobacco (Pittas F, 2009).

The lower consumption of tobacco in patients and their families before age 20, can be explained by the hygiene theory, which states that patients are less susceptible to infections than the healthy, as a result of improved health and social conditions, thus they may also be more protected against toxic, and exposure to tobacco smoke in childhood and adolescence (Ramagopalan, 2011b). Our objective was to study the consumption of tobacco after 20 years of age, and we know that it worsens the disease (Ebers, 2008; Sloka, 2009). Our study supports this idea: patients exposed to tobacco smoke, or who used to smoke before 20 years, contracted the disease earlier.

In northern European countries vitamin D deficit is frequent. Sunlight and diet are the main sources of vitamin D. Although in Spain there is enough solar radiation throughout the year, we found that vitamin D supplementation in infancy and adolescence can prevent the risk of M.S.

To our knowledge, it is the only Spanish population study which evaluated the intake of food rich in vitamin D in childhood and adolescence, to establish them as risk factors or protection against disease.

The results of epidemiological studies support the protective effect of vitamin D. Although not exactly known the mechanism of action of vitamin D in the risk of MS, existing evidence recommend preventing vitamin D deficit.

HLA-DRB1*1501 and month of birth

Several studies have shown that genetic allelic variations in the region of the HLA class II (mainly in the genes of HLA-DR), represent the main risk factor for developing MS. Furthermore, genetic interactions between parental alleles of HLA-DR, are considered modifiers of the risk of suffering MS and its clinical features. The haplotype HLA-DRB1*1501, is the genetic marker that has been associated with a threefold increased risk of developing M.S. in western Caucasians. The timing of gene-environment interaction could take place is crucial.

As the association of M.S. and the month of birth is higher in familiar cases, it is also supported a gene-environment interaction.
Our population of patients who underwent genotype is homogeneous and similar in epidemiological characteristics to other populations (Ramagopalan 2007, 2008 and 2000a, Romero-Pinel, 2010 and 2011). Our cohort of 491 M.S. patients in the University Hospital 12 de Octubre consists of more women than men (68 % women vs. 32 % male) in a 2:1 ratio. The average age is 41.7 (± 10.9) years. The 66 % of patients were between 30 and 50. Most of the patients (62.3%) have the relapsing-remitting form of the disease, compared to 11.8 % of progressive forms. The age of onset of the disease was 35.1 years (± 12.64), the EDSS of disease onset of 2.2 (± 1.7) and current EDSS of 2.3 (± 2.2), indicating that this is a cohort with low disease progression.

We found 56 different genotypes in patients with M.S., also present between healthy controls. The allele HLA-DRB1*15 was found more frequently in patients with M.S. (35 %) than in controls (17 %) (p < 0.001), as in other studies (Ramagopalan 2007). Unlike previous studies (Romero-Pinel, 2011), patients who were carriers of DRB1*15 allele showed a lower EDSS (2.3) than those not carrying (2.6), even when compared with the population mean EDSS (2.5). Furthermore, patients monozygotic for DRB1*15 (n = 2) had a mean EDSS of 1.5. MS patients carrying the DRB1*15 allele tend to reach a longer evolution without disability (EDSS <3) (15 ± 9 years vs.12 ± 9 years in non-carriers, p = 0.0043). There were no differences in gender or age of onset.

In our cohort, there is no association between the primary M.S. susceptibility allele and a poor outcome of the disease, although in the diseased population frequency is significantly higher than in the healthy population. This allele, however, is in an 8% associated with protective allele DR7, which could explain the results of improved performance of patients with HLA-DRB1*15.

It has been recently published (Ramagopalan, 2009b) that there is an association between the month of birth, the HLA-DRB1 genotype and M.S. risk. In a study of 4,834 M.S. patients and 4,056 controls not affected relatives in Canada, Sweden and Norway, were genotyped for HLA-DRB1 gene. More M.S. HLA-DRB1 * 15 patients were born in April (p = 0.004) compared with patients who did not carry HLA-DRB1*15. Fewer M.S. HLA-DRB1*15 patients were born in November, compared to patients without. These differences were not observed in controls or relatives not affected.

This supports the theory that it must be an interaction between a seasonal risk factor, a locus closer to HLA-DRB1*15, during pregnancy, or about postpartum.

Our results support the hypothesis, since in patients with M.S. who were carriers of HLA-DRB1*15 (10.3 %) compared with patients without HLA-DRB1*15 (3.8 %),
significantly more patients were born in December ($p = 0.0185$). This is also confirmed by comparing births in healthy controls carrying HLA-DRB1*15 (1%) compared to HLA-DRB1*15 non-carriers (10.3%). The month of birth in December was significantly more frequent ($p = 0.028$) in healthy controls, non-carriers of HLA-DRB1*15.

One possible explanation is that a high proportion of genes that regulate viral protein EBNA-3 are regulated by vitamin D. Epstein-Barr virus (EBV) potency vitamin D deficiency (Disanto, 2011), blocking the effects of vitamin D. An infectious environmental factor, such as EBV, could interact after birth, in the most susceptible persons to vitamin D deficiency, as are the carriers of HLA-DRB1*15. We recall that the presence of HLA-DRB1*15, is twice more common in M.S. patients than in the general population, and that will encourage EBV infection in childhood (Simon, 2011), the napkin theory.

It is also believed that vitamin D levels, may act as a protective factor against respiratory infections, particularly infection by EBV, through the synthesis of human cathelicidin (IL-37). Found an association between the months when vitamin D levels are lower, and the peak of those EBV-related diseases, such as Hodgkin's lymphoma and infectious mononucleosis (Grant, 2010). The effect of EBV infection in the risk of M.S. may be modified by the level of vitamin D in the host (Ascherio, 2007) or by coinfection of an agent that increases the risk of M.S. (often in M.S. high risk areas) or reduces the risk of M.S. (is less common in low-risk areas).

In conclusion, our population of patients with M.S. born more in winter (January), a diet rich in vitamin D and vitamin supplements before age 20 protects the risk of M.S., and the only haplotype sets susceptibility to M.S. (HLA-DRB1*15), which modifies its vitamin D expression is associated with a greater number of births of the same patients in December.

The hypothesis that vitamin D deficiency in childhood, alter the expression of HLA-DRB1 in the thymus, with a loss of tolerance in the thymus and increased autoimmunity in later stages suggested in several studies (Ramagopalan, 2009a, Handunnetthi, 2010). We add to our study that, apart from vitamin D deficiency, we suggest the interaction of other factors and environmental factors in winter HLA-DRB1*15, more patients birth in December.

New questions are added to the view of our results and it would be interesting to confirm whether patients with HLA - DRB1 * 15, born in winter, had similar infectious processes early. New lines of research have recently opened on the flora macrobiota,
which could explain these differences: Patients treated with antibiotics in the early stages, could have their flora macrobiota altered.

7.7 Conclusions

1. - The births of M.S. patients are higher in January and lower in February.

2. - Intake of vitamin supplements, fish and eggs in infancy and childhood, childhood immunization and not taking bovine milk protect against risk of M.S.

3. - The month of birth in December, the genotype HLA-DRB1*15 and the risk of MS are associated. Our study supports the fact that the HLA-DRB1*15 is the site of gene-environmental interaction.
9. ANEXOS

ANEXO I. CRITERIOS DIAGNÓSTICOS DE POSER (1983).

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Datos adicionales necesarios para el diagnóstico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esclerosis múltiple clínicamente definida.</td>
<td>2 brotes y evidencia clínica de dos lesiones separadas</td>
</tr>
<tr>
<td>Esclerosis múltiple clínicamente definida con apoyo de laboratorio</td>
<td>2 brotes, evidencia clínica de una lesión y paracínica de otra lesión separada (RM, Potenciales evocados).</td>
</tr>
<tr>
<td>Esclerosis múltiple clínicamente probable.</td>
<td>2 brotes y evidencia clínica de una lesión.</td>
</tr>
<tr>
<td>Esclerosis múltiple probable con apoyo de laboratorio.</td>
<td></td>
</tr>
</tbody>
</table>
ANEXO II. HOJA DE INFORMACIÓN AL PACIENTE Y CONSENTIMIENTO INFORMADO.

Título del estudio: Estudio observacional de hábitos alimentarios, mes de nacimiento y riesgo de desarrollar Esclerosis Múltiple.

INTRODUCCIÓN.

Estimado Sr./ Sra.:

Se ha propuesto participar voluntariamente en un estudio observacional de pacientes con Esclerosis Múltiple. Su neurólogo, el Dr./Dra……………………………., considera que usted reúne los requisitos iniciales para su inclusión en el mismo. No obstante, antes de que usted de su consentimiento para participar en el mismo, es necesario que entienda lo que supondrá su participación.

El presente documento, describe el propósito de este estudio.

Le rogamos lea detenidamente este documento y no dude en ponerse en contacto con su médico para cualquier pregunta que le pueda surgir acerca de este estudio.

PARTICIPACIÓN EN EL ESTUDIO.

Su participación es estrictamente voluntaria. Usted puede negarse a participar antes o durante el estudio sin que ello se derive en ningún perjuicio, ni que se vean afectados su atención médica o que suponga una pérdida de los beneficios a los que usted tenga derecho.

OBJETIVO Y NATURALEZA EL ESTUDIO.

Investigar el mes del nacimiento de los pacientes con Esclerosis Múltiple y estudiar los hábitos alimentarios y el riesgo de desarrollar Esclerosis Múltiple, para lo cual le pasaremos una encuesta presencial de hábitos alimentarios de su madre durante su gestación y los suyos durante la infancia y adolescencia.

Su participación en el estudio podría ayudar a conocer mejor su enfermedad en general y en concreto, podría ayudar a aprender más sobre la Esclerosis Múltiple, aunque puede que a usted no le reporte beneficios directos.

Este estudio está considerado como observacional. Por lo tanto, usted seguirá recibiendo el tratamiento habitual que su médico le indique.
CONFIDENCIALIDAD

Todos los datos recogidos en el trascurso del estudio serán tratados de forma estrictamente confidencial y serán utilizados para la valoración del estudio sin desvelar en ningún momento su nombre y apellidos. Los registros del estudio sólo incluirán un código numérico. Sin embargo, precisarán tener acceso a ella el investigador del estudio. En determinadas circunstancias, las Autoridades Sanitarias (Departamento de Sanidad de su Comunidad Autónoma) y el Comité Ético de su hospital podrán consultar la información confidencial identificada con su código numérico.

Al firmar este Consentimiento Informado, Usted autoriza al investigador a facilitar sus datos médicos a la Autoridades Sanitarias y el Comité Ético de su hospital. Existe la posibilidad de que se presenten los resultados de esta investigación en reuniones y/o publicaciones, sin que su identidad sea desvelada en ningún momento.

De acuerdo con la Ley 15/1999 de Protección de Datos de Carácter Personal, los datos personales que se le requieren (p.ej. edad, sexo, datos de salud) son los necesarios para cubrir los objetivos del estudio. En ninguno de los informes del estudio aparecerá su nombre, y su identidad no será revelada a persona alguna salvo para cumplir con los fines del estudio, y en el caso de urgencia médica o requerimiento legal. Cualquier información de carácter personal que pueda ser identificable será conservada y procesada por medios informáticos en condiciones de seguridad con el propósito de determinar los resultados del estudio. El acceso a dicha información quedará restringido al promotor o a los responsables que designe que estarán obligados a mantener la confidencialidad de la información. Los resultados del estudio podrán ser comunicados a las Autoridades Sanitarias y, eventualmente, a la comunidad científica a través de congresos y/o publicaciones.

El consentimiento para el tratamiento de sus datos personales y para su cesión es revocable. Usted puede ejercer el derecho de acceso, rectificación y cancelación dirigiéndose al investigador.

INFORMACIÓN Y TELÉFONOS DE CONTACTO.

El presente estudio y Consentimiento Informado han sido aprobados por el Comité Ético de Investigación Clínica (CEIC) del Hospital 12 de Octubre. El CEIC está compuesto por un grupo de miembros científicos y no científicos que supervisan la investigación que involucra a seres humanos, siguiendo las normas de la Agencia Española del Medicamento y Productos Sanitarios.
Su médico y/o miembros de su equipo están a su disposición para atender cualquier consulta que usted quiera realizar con relación a la terapia descrita o los procedimientos del estudio.

Si usted desea o necesita más información sobre el estudio, la investigación presente, o en caso de un acontecimiento relacionado con el estudio, puede contactar con el investigador,

Dra. Guijarro en el teléfono 91 336 80 00 ext 1333

CONSENTIMIENTO INFORMADO DE LOS PACIENTES CON ESCLEROSIS MÚLTIPLE

Yo…………………………………………………………………………………………

he leído la hoja de información al paciente que se me ha entregado y he podido hacer preguntas sobre el estudio.

He hablado con el Dr………………………………………………., investigador clínico responsable del mismo.

Comprendo que mi participación es voluntaria.

Comprendo que puedo retirarme del estudio cuando quiera, sin tener que dar explicaciones y sin que esto repercuta en mis cuidados médicos.

Por lo que presto libremente mi conformidad para participar en el estudio.

Este consentimiento puede ser revocado en cualquier momento por mi parte sin necesidad de expresión de causa alguna.

Madrid, a...... de…………………… de 20........

Firma del participante…………………………………. Firma del Médico
ANEXO III. ENCUESTA DE HÁBITOS ALIMENTARIOS, VALIDADA SEGÚN LOS CUESTIONARIOS DE ASCHERIO.

DATOS DEMOGRAFÍCOS:

Sexo: [] V | [] M

Fecha de nacimiento: / /
Lugar de nacimiento:
Peso al nacimiento: kg Talla al nacimiento: cm
Peso actual: kg Talla actual: cm
Lugar de residencia:
Zonas de residencia anteriores: (desde cuándo y hasta cuándo):

DATOS DE LA ENFERMEDAD

Edad de inicio:
EDSS al inicio de la enfermedad:

HÁBITOS DIETÉTICOS:

¿Recibió lactancia materna? ☺ Si ☐ No
¿Cuántos meses? ______________

Suplementos dietéticos durante la lactancia materna:____________________________________

Dieta que realizó entre su infancia y los 20 años:

- Ingesta de pescado:
 - ☺ Si: más de tres veces por semana
 - ☐ Si: menos de tres veces por semana
 - ☐ No
 - ☐ No lo sé

- Embutidos, carne de cerdo, casquería:
 - ☺ Si: más de tres veces por semana
 - ☐ Si: manos de tres veces por semana
 - ☐ No
 - ☐ No lo sé

- Huevos:
 - ☺ Si: más de tres huevos por semana
 - ☐ Si: menos de tres huevos por semana
 - ☐ No
 - ☐ No lo sé
- Leche
 - Sí: más de tres vasos al día
 - Sí: menos de tres vasos al día
 - No
 - No lo sé

¿Qué tipo de leche tomaba?

<table>
<thead>
<tr>
<th>De vaca</th>
<th>De brick</th>
<th>Otras</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semidesnatada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desnatada</td>
<td></td>
</tr>
</tbody>
</table>

PROCESOS DURANTE LA INFANCIA

<table>
<thead>
<tr>
<th>Patología</th>
<th>Sí / No</th>
<th>Edad</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCE (golpes en cabeza)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convulsiones febriles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infecciones en sistema nervioso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varicela</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarampión</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubéola</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paperas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mononucleosis infecciosa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¿Recibió complejos vitamínicos durante la infancia?
 - si ¿Cuál?:
 - no

¿Tomaba café?
 - sí
 - no

¿Ha sido vacunado según el calendario habitual?
 - sí
 - no
9. ANEXOS.

VIDA LABORAL

Actividad o profesión antes del diagnóstico: ___________________

Otras profesiones anteriores:
¿En alguno de estos trabajos estuvo expuesto a agentes tóxicos?:
 o sí; ¿a qué tóxicos?:
 o no
 o no lo sé

En caso de trabajar o ayudar en casa, estuvo expuesto a agentes tóxicos?:
 o sí; ¿a qué tóxicos?
 o no
 o no lo sé

EXPOSICIÓN SOLAR

En los primeros 20 años de su vida, ¿ha veraneado en la playa?
 o sí, más de 5 veces
 o sí, menos de 5 veces
 o no

En los primeros 20 años de su vida, ¿ha practicado algún deporte o actividad al aire libre de forma regular? (jardinería, golf, tenis, fútbol, senderismo, jardinería, ganadería,…?)
 o sí, más de tres veces por semana
 o sí, menos de tres veces por semana
 o no

En los primeros 20 años de su vida, ¿ha desarrollado alguna actividad laboral al aire libre? (barrendero, agricultor, albañil, pastor, jardinero…)
 o sí, durante más de 5 años
 o sí, durante menos de 5 años
 o no

Tipo de piel:

| Tipo I: piel blanca que se quema con facilidad y no se broncea. |
| Tipo II: piel blanca que se quema con facilidad y se broncea minimamente. |
| Tipo III: piel ligeramente morena que se quema moderadamente y se broncea gradualmente. |
| Tipo IV: piel morena que se quema minimamente y se broncea bien. |
| Tipo V: piel muy morena que dificilmente se quema y se broncea intensamente. |
| Tipo VI: piel negra que no se quema y de profunda pigmentación. |
Horas al día de exposición solar:

Indique las horas en las que estaba expuesto:

| 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |

ESTRÓGENOS (SOLO MUJERES)

Edad de su primera regla (menarquia): __________ años

¿Tomó anticonceptivos orales antes del diagnóstico?
- si: ¿Cuántos años antes?
 - ¿Cuánto tiempo?
- no

¿Ha estado embarazada?
- si: ¿Cuántas veces?
 - ¿Ha sufrido algún aborto espontáneo?: si no
 - ¿Cuántos?:
- no

HÁBITO TABÁQUICO

Durante su infancia, ¿fumaban sus padres u otros miembros de la familia en su presencia?
- si
- no
- no lo sé

¿Fuma usted?
- Sí: ¿Desde qué edad?: ¿Cuántos cigarrillos al día?:
- No

¿Ha fumado?
- Sí: ¿Hasta qué edad? ¿Cuántos años? ¿Cuántos cigarrillos al día?:
- No

ENFERMEDADES AUTOINMUNES

¿Ha sido usted diagnosticado de alguna enfermedad autoinmune?
- sí
- no
- no lo sé

¿Han sido sus padres, madre o hermanos diagnosticados de alguna enfermedad autoinmune?
- sí
- no
- no lo sé

(psoriasis, D.M.-1, artritis reumatoide, lupus, asma, tiroides, miastenia gravis, enfermedad inflamatoria intestinal,...)
ENCUESTA PARA LA MADRE

GESTACIÓN:

¿Presentó algún problema durante la gestación?:
 o Si; ¿en qué mes del embarazo?: 1 2 3 4 5 6 7 8 9 10 11 12
 o ¿Recibió alguna medicación?: ____________________________

¿Cómo fue su parto? ____________

Edad en el momento del parto:

Suplementos dietéticos durante el embarazo:__________________________

¿Fumó durante el embarazo?
 o Si. Nº cigarrillos/día:
 o No

HÁBITOS DIETÉTICOS DURANTE EL EMBARAZO

- Ingesta de pescado:
 o Sí: más de tres veces por semana
 o Sí: menos de tres veces por semana
 o No
 o No lo sé

- Embutidos, carne de cerdo, casquería:
 o Sí: más de tres veces por semana
 o Sí: menos de tres veces por semana
 o No
 o No lo sé

- Huevos:
 o Sí: más de tres huevos por semana
 o Sí: menos de tres huevos por semana
 o No
 o No lo sé

- Leche
 o Sí: más de tres vasos al día
 o Sí: menos de tres vasos al día
 o No
 o No lo sé

¿Qué tipo de leche tomaba?

<table>
<thead>
<tr>
<th>Tipo de Leche</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>De vaca</td>
<td></td>
</tr>
<tr>
<td>De brick</td>
<td>Entera</td>
</tr>
<tr>
<td></td>
<td>Semidesnatada</td>
</tr>
<tr>
<td></td>
<td>Desnatada</td>
</tr>
<tr>
<td>Otras</td>
<td></td>
</tr>
</tbody>
</table>
VIDA LABORAL

Actividad o profesión antes del embarazo: __

Otras profesiones anteriores: __

¿En alguno de estos trabajos estuvo expuesto a agentes tóxicos?:
 o Si: ¿a qué tóxicos?:
 o No
 o No lo sé

En caso de trabajar o ayudar en casa, estuvo expuesto a agentes tóxicos?:
 o Si: ¿a qué tóxicos?
 o No
 o No lo sé

EXPOSICIÓN SOLAR

Tipo de piel:

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Piel blanca que se quema con facilidad y no se broncea.</td>
</tr>
<tr>
<td>II</td>
<td>Piel blanca que se quema con facilidad y se broncea minimamente.</td>
</tr>
<tr>
<td>III</td>
<td>Piel ligeramente morena que se quema moderadamente y se broncea gradualmente.</td>
</tr>
<tr>
<td>IV</td>
<td>Piel morena que se quema minimamente y se broncea bien.</td>
</tr>
<tr>
<td>V</td>
<td>Piel muy morena que difícilmente se quema y se broncea intensamente.</td>
</tr>
<tr>
<td>VI</td>
<td>Piel negra que no se quema y de profunda pigmentación.</td>
</tr>
</tbody>
</table>

Horas al día de exposición solar: []

Indique las horas en las que estaba expuesta:

<p>| | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
</tbody>
</table>
ANEXO IV. CONSENTIMENTO INFORMADO PARA CONSERVACIÓN DE MUESTRAS BIOLÓGICAS “CODIFICADAS” EN EL BIOBANCO DEL HOSPITAL UNIVERSITARIO 12 DE OCTUBRE.

Titulo del estudio: Epistasis entre los haplotipos HLA-DRB1 en una cohorte de pacientes con Esclerosis Múltiple.

Yo (nombre y apellidos) _______________ He leído la hoja de información que se me ha entregado.

He podido hacer preguntas sobre el estudio.

He hablado con: (nombre del investigador).

Comprendo que mi participación es voluntaria.

Comprendo que puedo retirarme del estudio:

- Cuando quiera
- Sin tener que dar explicaciones
- Sin que esto repercuta en mis cuidados médicos

Comprendo que el Biobanco del Hospital 12 de Octubre conservará mis muestras biológicas codificadas (procedimiento por el cual la muestra se identifica con un número codificado para salvaguardar mi identidad) y que el destino de estas muestras es la investigación de posibles factores genéticos relacionados con la Esclerosis Múltiple.

Comprendo que la donación de mi muestra de ADN es voluntaria y gratuita.

Comprendo que puede realizarse cesión de la muestra a otros investigadores, pero que nunca se comercializará con ella.

Por lo que,

DOY / NO DOY mi consentimiento voluntariamente para que pueda realizarse el estudio sobre posibles factores genéticos relacionados con la Esclerosis Múltiple en mi muestra de ADN.

DOY / NO DOY mi consentimiento voluntariamente para que mi muestra de ADN se almacene en el Biobanco del Hospital Universitario 12 de Octubre de Madrid para utilizarla en otros estudios sobre factores genéticos relacionados con la Esclerosis Múltiple. Mi sangre y mis muestras de ADN se identificarán con un número codificado, y mi identidad se mantendrá en secreto.

Fecha y firma del participante Fecha y firma del investigador
ANEXO V. EXPANDED DISABILITY STATUS SCALE (E.D.S.S).

Escala EDSS de Kurtzke: criterios de puntuación

Escala Funcional (FS)

Piramidal
1. Normal.
2. Signos anormales sin incapacidad.
3. Incapacidad mínima.
5. Paraparesia o hemiparesia grave. Monoplejía o tetraparesia moderada.
7. Tetraplejía.

Cerebelo
1. Normal.
2. Signos anormales sin incapacidad.
3. Ligera ataxia.
4. Moderada ataxia de los miembros o del tronco.
5. Ataxia intensa de todas las extremidades.
6. Incapaz de realizar movimientos coordinados por ataxia.
 + añadir tras cada puntuación en caso de debilidad grado 3 que dificulte la prueba.

Tronco del encéfalo
1. Normal.
2. Solamente signos.
3. Nistagmo moderado o cualquier otro tipo de incapacidad.
4. Nistagmo intenso, parálisis extraocular intensa o moderada incapacidad por otros pares.
5. Disartria intensa o cualquier otro tipo de incapacidad.
6. Incapacidad para tragar o hablar.

Sensibilidad
1. Normal.
2. Alteración de la sensibilidad vibratoria en una o dos extremidades.
3. Disminución ligera de la sensibilidad táctil o dolorosa, o de la posicional y/o disminución ligera de la sensibilidad vibratoria en uno o dos miembros o vibratoria en 3 o 4 miembros.

4. Id. moderada, incluida alteración propioceptiva en 3 ó 4 miembros.

5. Id. intensa, o bien grave alteración propioceptiva en más de 2 miembros.

6. Pérdida de la sensibilidad en una o dos extremidades o bien disminución del tacto o dolor y/o pérdida del sentido posicional en más de dos miembros.

7. Pérdida de sensibilidad prácticamente total por debajo de la cabeza.

Instrucciones: Añada un punto más en la puntuación de 1-4 vesical si se usa autocateterismo vesical. Puntúe la situación peor del modo siguiente:

Vejiga
1. Función normal.
2. Ligero titubeo, urgencia o retención.
3. Moderado titubeo, urgencia o retención tanto del intestino como de la vejiga, o incontinencia urinaria poco frecuente.
4. Incontinencia < semanal.
5. Incontinencia > semanal.
6. Incontinencia diaria.
7. Catéter vesical.

Intestino
1. Función normal.
2. Estreñimiento de < diario, sin incontinencia.
3. Estreñimiento de menos de a diario pero no incontinencia.
4. Incontinencia < semanal.
5. Incontinencia > semanal pero no a diario.
7. Grado 5 intestinal más grado 5 de disfunción vesical.

Visión
1. Normal.
2. Escotoma con agudeza visual (corregida) superior a 20/30.
3. El ojo que está peor con un escotoma tiene de agudeza entre 30/30 y 20/59.
4. El ojo peor (por escotoma o alteración de campo) con agudeza máxima entre 20/60 y 20/99.
5. id. entre 20/100 y 20/200; igual un grado 3 más máxima agudeza en el mejor ojo de 20/60 o inferior.
6. id. en el ojo peor con agudeza inferior a 20/200; o bien grado 4 más máxima agudeza en el ojo mejor de 20/60 o menos.
7. +. añadir tras la puntuación en los grados 0-5 si existe palidez temporal.

Funciones mentales
1. Normal.
2. Alteración del estado de ánimo únicamente (no afecta a la puntuación EDSS).
3. Ligera alteración cognitiva.
4. Moderada alteración cognitiva.
5. Marcada alteración cognitiva.
6. Demencia o síndrome cerebral crónico.

Expanded Disability Status Scale (EDSS)
0= examen neurológico normal (todos los ítems de FS son de cero).
1.0= ninguna incapacidad pero signos mínimos solamente en un apartado de la FS.
1.5= ninguna incapacidad pero signos mínimos en más de un apartado de la FS.
2.0= incapacidad mínima en un apartado de la FS (al menos uno con puntuación de 2).
2.5= incapacidad mínima (dos apartados de la FS puntuando 2).
3.0= incapacidad moderada en un FS (un FS puntúa 3 pero los otros entre 0 y 1). El paciente deambula sin dificultad.
3.5= deambula sin limitaciones pero tiene moderada incapacidad en una FS (una tiene un grado 3) o bien tiene una o dos FS que puntúan un grado 2 o bien dos FS puntúan un grado 3 o bien 5 FS tienen un grado 2 aunque el resto estén entre 0 y 1.
4.0= deambula sin limitaciones, es autosuficiente, y se mueve de un lado para otro alrededor de 12 horas por día pese a una incapacidad relativamente importante de acuerdo con un grado 4 en una FS (las restantes entre 0 y 1). Capaz de caminar sin ayuda o descanso unos 500 metros.
4.5= deambula plenamente sin ayuda, va de un lado para otro gran parte del día, capaz de trabajar un día completo, pero tiene ciertas limitaciones para una actividad plena, o bien requiere un mínimo de ayuda. El paciente tiene una incapacidad relativamente importante, por lo general con un apartado de FS de grado 4 (los restantes entre 0 y 1) o bien una combinación alta de los demás apartados. Es capaz de caminar sin ayuda ni descanso alrededor de 300 metros.
5.0= camina sin ayuda o descanso en torno a unos 200 metros; su incapacidad es suficiente para afectarle en funciones de la vida diaria, v.g. trabajar todo el día sin medidas especiales. Los equivalentes FS habituales son uno de grado 5 solamente, los otros entre 0 y 1 o bien combinaciones de grados inferiores por lo general superiores a un grado 4.

5.5= camina sin ayuda o descanso por espacio de unos 100 metros; la incapacidad es lo suficientemente grave como para impedirle plenamente las actividades de la vida diaria. El equivalente FS habitual es de un solo grado 5, otros de 0 a 1, o bien una combinación de grados inferiores por encima del nivel 4.

6.0= requiere ayuda constante, bien unilateral o de forma intermitente (bastón, muleta o abrazadera) para caminar en torno a 100 metros, sin o con descanso. Los equivalentes FS representan combinaciones con más de dos FS de grado 3.

6.5= ayuda bilateral constante (bastones, muletas o abrazaderas) para caminar unos 20 metros sin descanso. El FS habitual equivale a combinaciones con más de dos FS de grado 3+.

7.0= incapaz de caminar más de unos pasos, incluso con ayuda, básicamente confinado a silla de ruedas y posibilidad de trasladarse de ésta a otro lugar, o puede manejarse para ir al lavabo durante 12 horas al día. El equivalente FS habitual son combinaciones de dos o más de un FS de grado 4+. Muy raramente síndrome piramidal grado 5 solamente.

7.5= incapaz de caminar más de unos pasos. Limitado a silla de ruedas. Puede necesitar ayuda para salir de ella. No puede impulsarse en una silla normal pudiendo requerir un vehículo motorizado. El equivalente FS habitual son combinaciones con más de un FS de grado 4+.

8.0= básicamente limitado a la cama o a una silla, aunque puede dar alguna vuelta en la silla de ruedas, puede mantenerse fuera de la cama gran parte del día y es capaz de realizar gran parte de las actividades de la vida diaria. Generalmente usa con eficacia los brazos. El equivalente FS habitual es una combinación de varios sistemas en grado 4.

8.5= básicamente confinado en cama la mayor parte del día, tiene un cierto uso útil de uno o ambos brazos, capaz de realizar algunas actividades propias. El FS habitual equivale a combinaciones diversas generalmente de una grado 4+.

9.0= paciente inválido en cama, puede comunicarse y comer. El equivalente FS habitual son combinaciones de un grado 4+ para la mayor parte de los apartados.
9.5 = totalmente inválido en cama, incapaz de comunicarse o bien comer o tragar. El equivalente FS habitualmente son combinaciones de casi todas las funciones en grado 4+.

10 = muerte por esclerosis múltiple.
10. BIBLIOGRAFÍA
9. BIBLIOGRAFÍA

that multiple sclerosis severity is determined by alleles at the HLA-DRB1 locus. Proc Natl Acad Sci USA 2007; 104:20896–20901.

