Publication:
Uncommon dislocation processes at the incipient plasticity of stepped gold surfaces

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-03-14
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Gold vicinal surfaces (788), with a high density of steps, along with (111) flat surfaces taken as a reference, have been nanoindented and their resulting penetration curves and related defect structure comparatively analyzed by AFM and atomistic simulations. Stepped surfaces are shown to yield at smaller loads than (111) ones in agreement with calculations of the critical resolved shear stress needed to nucleate a dislocation. In the stepped surfaces, a novel intermediate state is identified in which the penetration curves depart from a Hertzian behavior prior to the appearance of pop-ins. This state is shown to result from heterogeneous nucleation at preexisting surface steps of dislocation loops, most of which retract and vanish when the indenter load is removed.
Description
© 2008 The American Physical Society. The authors thank J.E. Ortega for providing us the Au(788) sample. Financial support from the Spanish MEC, Project No. MAT2006-13149-C02-01 and from the CAM Projects Nos. CAM-S-0505/PPQ/0316 and GR/ MAT/0632/2004 are gratefully acknowledged. V. N. thanks MEC through No. MAT2003-08627-C02-01.
Unesco subjects
Keywords
Citation
[1] J. Li et al., Nature (London) 418, 307 (2002). [2] S. G. Corcoran et al., Phys. Rev. B 55, R16057 (1997). [3] J. D. Kiely and J. E. Houston, Phys. Rev. B 57, 12588 (1998); J. D. Kiely, R. Q. Hwang, and J. E. Houston, Phys. Rev. Lett. 81, 4424 (1998). [4] A. Gouldstone, K. V. Vliet, and S. Suresh, Nature (London) 411, 656 (2001). [5] O. R. de la Fuente et al., Phys. Rev. Lett. 88, 036101 (2002). [6] C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B 58, 11085 (1998). [7] G. L. W. Cross et al., Nat. Mater. 5, 370 (2006). [8] C. A. Schuh, J. K. Mason, and A. C. Lund, Nat. Mater. 4, 617 (2005). [9] A. M. Minor et al., Nat. Mater. 5, 697 (2006). [10] J. Knap and M. Ortiz, Phys. Rev. Lett. 90, 226102 (2003). [11] J. A. Zimmerman et al., Phys. Rev. Lett. 87, 165507 (2001). [12] D. Shan et al., Mater. Sci. Eng. A 412, 264 (2005). [13] M. R. Shankar, Appl. Phys. Lett. 90, 171924 (2007). [14] H. H. Yu et al., J. Mech. Phys. Solids 55, 489 (2007). [15] J. Li, MRS Bull. 32, 151 (2007). [16] I. Horcas et al., Rev. Sci. Instrum. 78, 013705 (2007). [17] S. M. Foiles, Phys. Rev. B 32, 3409 (1985). [18] W. H. Press et al., Numerical Recipes in Fortran (Cambridge University Press, Cambridge, 1992). [19] J. Li, Model. Simul. Mater. Sci. Eng. 11, 173 (2003). [20] A. Asenjo et al., Phys. Rev. B 73, 075431 (2006). [21] E. Carrasco et al., Phys. Rev. B 68, 180102 (2003). [22] A. Mugarza et al., Phys. Rev. Lett. 87, 107601 (2001). [23] K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985). [24] Y. Shibutani and A. Koyama, J. Mater. Res. 19, 183 (2004). [25] Movies of these processes are available as Auxiliary Material. See EPAPS Document No. E-PRLTAO-100- 024811. For more information on EPAPS, see http:// www.aip.org/pubservs/epaps.html. [26] Except a few dislocations at the surface, with Burgers vector parallel to the surface. [27] B. Luan and M. O. Robbins, Nature (London) 435, 929 (2005).
Collections