Publication:
Frustration Free Gapless Hamiltonians for Matrix Product States

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-01
Authors
Fernández González, C.
Schuch, N.
Wolf, M.M.
Cirac, J.I.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
For every Matrix Product State (MPS) one can always construct a so-called parent Hamiltonian. This is a local, frustration free, Hamiltonian which has the MPS as ground state and is gapped. Whenever that parent Hamiltonian has a degenerate ground state space (the so-called non-injective case), we construct another ’uncle’ Hamiltonian which is also local and frustration free, has the same ground state space, but is gapless, and its spectrum is R +. The construction is obtained by linearly perturbing the matrices building up the state in a random direction, and then taking the limit where the perturbation goes to zero. For MPS where the parent Hamiltonian has a unique ground state (the so-called injective case) we also build such uncle Hamiltonian with the same properties in the thermodynamic limit.
Description
Keywords
Citation
1. A. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Valence bond ground states in isotropic quantum antiferromagnets, Comm. Math. Phys. 115, 477 (1988). 2. P. W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity, Science 235 (4793), 11961198 (1987). 3. I. Arad, A. Kitaev, Z. Landau and U. Vazirani, An area law and sub-exponential algorithm for 1D systems, arXiv:quant-ph/1301.1162. 4. L. Balents, Spin liquids in frustrated magnets, Nature 464, 199-208 (2010). 5. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics I and II, Springer Verlag, 1979. 6. H. J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett. 86, 910 (2001), arXiv:quant-ph/0004051. 7. X. Chen, B. Zeng, Z. C. Gu, I. Chuang, X. G. Wen, Tensor product representation of topological ordered phase: necessary symmetry conditions Phys. Rev. B 82, 165119 (2010). 8. X. Chen, Z.-C. Gu and X.-G. Wen, Classification of gapped symmetric phases in 1D spin systems, Phys. Rev. B 83, 035107 (2011), arXiv:cond-mat/1008.3745. 9. J. B. Conway, A course in Functional Analysis, Springer (1990). 10. M. Fannes, B. Nachtergaele and R. F. Werner, Finitely Correlated States on Quantum Spin Chains, Commun. Math. Phys. 144, 443-490 (1992). 11. C. Fernández-González, N. Schuch, M. M. Wolf, J. I. Cirac, D. Perez-Garcia, Gapless Hamiltonians for the toric code using the PEPS formalism, arXiv:1111.5817. 12. D. M. Greenberger, M. Horne and A. Zeilinger, Bells theorem, Quantum Theory, and conceptions of the Universe, ed. M. Kafatos, Kluwer Academic, Dordrecht (1989). 13. M.B. Hastings An Area Law for One Dimensional Quantum Systems, JSTAT, P08024 (2007). 14. A. Kitaev, Fault-tolerant quantum computation by anyons Ann. Phys. 303, 2-30 (2003), arXiv:quant-ph/9707021. 15. L. Fidkowsk and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 83, 075103 (2011), arXiv:cond-mat/1008.4138. 16. E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an antiferromagnetic chain, Annals of Physics, 16 (3), 407-466, 1961. 17. B. Nachtergaele, The spectral gap for some spin chains with discrete symmetry breaking, Commun. Math. Phys., 175 (1996) 565-606, arXiv:cond-mat/9410110v1. 18. B. Nachtergaele, Quantum spin systems, (2004) arxiv.org/abs/math-ph/0409006v1 19. D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac, Matrix Product State representations, Quant. Inf. Comput. 7, 401 (2007), quant-ph/0608197. 20. D. Prez-Garca, F. Verstraete, J. I. Cirac and M. M. Wolf, PEPS as unique ground states of local Hamiltonians, Quant. Inf. Comp. 8, 0650-0663 (2008), arXiv:quant-ph/0707.2260. 21. I. Peschel, On the entanglement entropy for a XY spin chain, Journal of Statistical Mechanics (2004) P12005. 22. F. Pollmann, E. Berg, A. M. Turner, M. Oshikawa Entanglement spectrum of a topological phase in one dimension, Phys. Rev. B 81, 064439 (2010) 23. M. Reed, B. Simon, Methods of modern mathematical physics. Vol. 2, Fourier analysis, self-adjointness, Academic Press (1975). 24. M. Sanz, D. Perez-Garcia, M. M. Wolf, and J. I. Cirac, A quantum version of Wielandt’s inequality, IEEE Trans. Inf. Theory 56 (2010) 4668-4673. 25. N. Schuch, I. Cirac, and D. P´erez-García, PEPS as ground states: degeneracy and topology, Annals of Physics 325, 2153 (2010), arXiv:1001.3807. 26. N. Schuch, D. Pérez-García and I. Cirac, Classifying quantum phases using matrix product states and projected entangled pair states, Physical Review B 84, 165139 (2011), arXiv:cond-mat/1010.3732. 27. J.I. Cirac, S. Michalakis ,D. Pérez-García and I. Cirac, Robustness in Projected Entangled Pair States, Phys. Rev. B 88, 115108 (2013),arXiv:cond-mat/1306.4003. 28. F. Verstraete, J. I. Cirac, Matrix product states represent ground states faithfully, Phys. Rev. B 73, 094423 (2006). 29. N. Schuch, D. Poilblanc, J. I. Cirac and D. Prez-Garcia, Resonating valence bond states in the PEPS formalism, Phys. Rev. B 86, 115108 (2012), arXiv:cond-mat/1203.4816. 30. S.R. White Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 28632866 (1992). 31. M. M. Wolf, G. Ortiz, F. Verstraete, J. I. Cirac, Quantum phase transitions in matrix product systems, Physical Review Letters, 97, 110403 (2006). 32. Z. Zhou, J. Wildeboer, A. Seidel, Ground state uniqueness of the twelve site RVB spinliquid parent Hamiltonian on the kagome lattice Phys. Rev. B 89, 035123 (2014).
Collections