Publication:
Shift and broadening of hyperfine components of the first doublet of cesium perturbed by foreign gases

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1980-12
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The collision broadening and shift of the hyperfine structure components of the ground-state splitting for the D_1 (8943 Å) and D_2 (8521 Å) cesium lines by noble gases (He, Ne, Ar, Kr, and Xe) and by light molecular gases (H_2 and N_2) under pressures not greater than 150 Torr and at a temperature of 295 K are investigated. The Lennard-Jones (12-6) interatomic potential constants are calculated for these systems, using the semiclassical theory of Lindholm-Foley (for Cs with Ne, Ar, Kr, Xe, and N_2 systems) and the quantum theory of Baranger (for Cs with He and H_2 systems), by comparing with our experimental results in fine structure. These potential constants are employed for the determination of the shift and broadening in hyperfine structure, using the hyperfine theory of collision broadening.
Description
© 1980 The American Physical Society.
Keywords
Citation
1 For a review see S. Y. Ch'en and M. Takeo, Rev. Mod. Phys. 29, 20 (1957); and R. G. Breene, Sr., The Shift and Shape of Spectral Lines (Pergamon, New York, 1963), among others. 2 (a) S. Y. Ch'en and R. O. Garret, Phys. Rev. 144, 59 (1966); (b) R. O. Garret and S. Y. Ch'en, ibid. 144, 66 (1966); (c) S. Y. Ch'en, E. C. Looi, and R. Garret, ibid. 155, 38 (1967); (d) R. O. Garret, S. Y. Ch'en, and E. C. Looi, ibid. 156, 48 (1967); (e) S. Y. Ch'en, D. E. Gilbert, and D. K. L. Tan, ibid. 148, 51 (1960); (f) D. E. Gilbert and S. T. Ch'en, ibid. 188, 40 (1969); (g) F. Rostas and J. L. Lemaire, J. Phys. B 4, 555 (1971). 3 S. Y. Ch'en, E. L. Lewis, and D. N. Stacey, J. Phys. B 2, 275 (1969). 4 Y. V. Evdokimov, Opt. Spektrosk. 24, 832 (1968) tOpt. Spectrosc. (USSR) 24, 448 (1968)]. 5 G. Smith, J. Phys. B 8, 2273 (1975). 6 E. Bernabeu, F. García Peralta, and J. M. Álvarez, J. Opt. Soc. Am. 67, 241 (1977). 7 J. M. Álvarez, Ph. D. thesis, University of Zaragoza, Spain, 1977 (unpublished); E. Bernabeu and J. M. Álvarez, in Proceedings of the Eleventh Congress of the International Commision for Optics, edited by J. Bescos, A. Hidalgo, L. Plaza, and J. Santamaria (Sociedad Española de Óptica, Madrid, 1978), p. 476. 8 E. Bernabeu and J. M. Álvarez, Opt. Pur. Apl. 12, 113 (1979). 9 J. M. Álvarez and E. Bernabeu, Opt. Pur. Apl. 11, 99 (1978). 10 The experimental fits of these absorption coefficients to a Voigt profile give a standard deviation of -6 x 10^4. 11 O. S. Heavens, J.Opt. Soc. Am. 10, 1058 (1961); J. K. Link, ibad. 9, 1195 (1966). 12 C. L. Chen and A. V. Phelps, Phys. Rev. 173, 62 (1968). 13 For the pressure range employed, the theoretical predictions give a linear dependence of the shift and broadening with the pressure. 14 D. A. Jackson, Proc. R. Soc. London 147, 2095 (1969); H. Kleiman, J. Opt. Soc. Am. 52, 441 (1961). 15 R. Granier, J. Granier, and F. Schuller, J. Quant. Spectrosc. Radiat. Transfer 16, 143 (1976). 16 J. F. Kielkopf, J. Phys. B 9, L547 (1976). 17 E. Lindholm, Ark. Mat. Astron. Fys. 32A, 17 (1945); H. M. Foley, Phys. Rev. 69, 616 (1946). 18 W. Behmenburg, J. Quant. Spectrosc. Radiat. Transfer 4, 177 (1964); W. R. Hindmarsh, A. D. Petford, and G. Smith, Proc. R. Soc. London 247, 296 (1967). 19 W. R. Hindmarsh and J. M. Farr, Progress in Quantum Electronics (Pergamon, New York, 1973). 20 M. Baranger, Phys. Rev. 111, 494 (1958); 11]., 481 (1958). 21 W. E. Baylis, J. Chem. Phys. 51, 2665 (1969); JILA, Report No. 100, University of Colorado, 1969 (unpublished). 22 G. D. Mahan, Chem. Phys. 50, 2735 (1969). 23 (a) H. C. Jacobson, Phys. Rev. A 4, 1363 (1971); (b) 4, 1368 (1971). 24 A. Omont, J. Phys. (Paris) 34, 179 (1973). 25 V. N. Rabane, Opt. Spektrosk. 41, 372 (1976) [Opt. Spectrosc. (USSR) 41, 214 (1976)l; Opt. Spektrosk. 41, 894 (1976) IOpt. Spectrosc. (USSR) 41, 526 (1976)l. 26 This can be due, in part, to the fact that the interatomic potential considered has only a van der Waals term.
Collections