Publication:
Efecto de la radiación láser de baja energía en la velocidad del movimiento dentario, en el dolor y en los niveles de Rankl y OPG en pacientes con tratamiento ortodóncico

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2014
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Description
UCM subjects
Keywords
Citation
1. Ainamo J, Bay I. Problems and proposals for recording gingivitis and plaque. Int. Dent. J. 1975; 25: 229-235. 2. Albertini R, Villaverde AB, Aimbire F, Salgado M, Bjordal JM, Alves LP, Munin E, Costas MS.Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660 nm and 684 nm) in carrageenan-induced rat paw edema. J. Photochem Photobiol. B. 2007; 89(1):50–55. 3. Alexandratou E, Yova D, Handris P, Kletsas D. &Loukas S. Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy. Photochem. Photobiol. Sci. 2002; 1(8): 547-552. 4. Artés-Ribas M, Arnabat-Domínguez J, Puigdollers A. Analgesic effect of a lowlevel laser therapy (830 nm) in early orthodontic treatment. Lasers Med. Sci. 2013; 28:335-341 5. Barbieri G, Solano P, Alarcon JA, Vernal R, Rios-Lugo J, Sanz M, Martín C. Biochemical markers of bone metabolism in gingival crevicular fluid during early orthodontic tooth movement. Angle Orthod. 2013; 83(1): 63-9. 6. Baumrind S. A reconsideration of the propriety of the “pressure-tension” hypothesis. Am. J. Orthod. 1969; 55(1):12-22. 7. Bicakci AA, Kocoglu-Altan B, Toker H, Mutaf I, Sumer Z. Efficiency of lowlevel laser therapy in reducing pain induced by orthodontic forces. Photomed Laser Surg. 2012; 30(8):460–465. 8. Burstone CJ. The biomechanics of tooth movement. In: Kraus BS, Riedel RA, editors. Vistas in orthod. Philadelphia: Lae Ɛt Febiger; 1962; p. 197-213. 9. Chee M, Sasaki C. Carbon dioxide laser fiber for the excision of oral leukoplakia. Ann. Otol. Rhinol. Laryngol. 2013; 122 (9):547-549. 10. Chow RT, David MA, Armati PJ. 830 nm laser irradiation induces varicosity formation, reduces mitochondrial membrane po- tential and blocks fast axonal flow in small and medium diameter rat dorsal root ganglion neurons: implications for the analgesic effects of 830 nm laser. J. Peripher Nerv. Syst. 2007; 12(1):28–39 11. Chow R, Armati P, Laakso EL, Bjordal JM, Baxter GD. Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. Photomed. Laser Surg. 2011; 29(6):356-381. 12. Enhos S, Veli I, Cakmak O, Ucar FI, Alkan A, Uysal T. OPG and RANKL levels around miniscrew implants during orthodontic tooth movement. Am. J. Orthod. Dentofacial Orthop. Am. Association of Orthod. 2013; 144(2):203–209. 13. Eren F, Altinok B, Ertugral F, Tanboga I. The effect of erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser therapy on pain during cavity preparation in paediatric dental patients: a pilot study. Oral Health Manag. 2013; 12 (2):80-84. 14. Flórez-Moreno GA, Isaza-Guzmán DM, Tobón-Arroyave SI. Time-related changes in salivary levels of the osteotropic factors sRANKL and OPG through orthodontic tooth movement. Am. J. Orthod. Dentofacial Orthop. Am Association of Orthod. 2013; 143(1):92–100. 15. Fornaini C, Riceputi D, Lupi-Pegurier L, Rocca JP. Patient responses to Er:YAG laser when used for conservative dentistry. Lasers Med. Sci. 2012; 27(6): 1143-1149. 16. Fornaini C. Er:YAG and adhesion in conservative dentistry: clinical overview. Laser Ther. 2013; 22(1):31-35. 17. Garlet TP, Coelho U, Silva JS, Garlet GP. Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur. J. Oral Sci. 2007; 115:355-362. 18. Genc G, Kocaderelli I, Tasar F, Kilinc K, El S, Sarkarati B. Effect of low-level laser therapy (LLLT) on orthodontic tooth movement. Lasers Med. Sci. 2013; 28:41-47. 19. Gojkov-Vukelic M, Hadzic S, Dedic A, Konjhodzic R, Beslagic E. Application of a diode laser in the reduction of targeted periodontal pathogens. Acta Inform. Med. 2013; 21(4): 237-240. 20. Jawad MM, Husein A, Ala MK, Hassan R, Shaari R. Overview of non-invasive factors (low level laser and low intensity pulsed ultrasound) accelerating tooth movement during orthodontic treatment. Lasers Med. Sci. 2012; doi:10.1007/s10103-012-1199-8 21. Karu T. Ten Lectures on Basic Science of Laser Phototherapy. Grängesberg, Sweden: Prima Books AB. 2007. 22. Katagiri T, Takahashi N. Regulatory mechanism of osteoblast and osteoclast differentiation. Oral Dis. 2002; 8 (3):147-59. 23. Kawasaki K, Shimizu N. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg. Med. 2000; 26:282-91. 24. Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am. J. Orthod. Dentofacial Orthop. 2006; 129(4):469.e1– 469.e32. 25. Laakso EL, Cabot PJ. Nociceptive scores and endorphin-containing cells reduced by low-level laser therapy (LLLT) in inflamed paws of Wistar rat. Photomed. Laser Surg. 2005; 23(1):32-35 26. Limpanichkul W, Godfrey K, Srisuk N, Rattanayatikul C. Effects of low-level lasser therapy on the rate of orthodontic movement. Orthod. Craniofac. Res. 2006; 9: 38-43. 27. Loë H. The gingival index, the plaque index, and the retention index systems. J. Periodontol. 1967; 38:610-6. 28. Lubart R, Eichler M, Lavi R, Friedman H & Shainberg A. Low-energy laser irradiation promotes cellular redox activity. Photomed. Laser Surg. 2005; 26 (1):3-9. 29. Luppanapornlarp S, Kajii TS, Surarit R, Iida J. Interleukin-1β levels, pain intensity, and tooth movement using two different mag- nitudes of continuous orthodontic force. Eur. J. Orthod. 2010; 32(5): 596–601 30. Masella RS, Meister M. Current concepts in the biology of orthodontic tooth movement. Am. J. Orthod. Dentofacial Orthop. 2006;129(4):458–468. 31. Masella RS, Chung PL. Thinking Beyond the Wire: Emerging Biologic Relationships in Orthodontics and Periodontology. YSODO. Elsevier Inc. 2008;14(4):290–304. 32. Meikle MC. The tissue, celular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur. J. Orthod. 2006; 126:112-117 33. Moore P, Ridgway, TD, Higbee, RG, Howard, EW & Lucroy, MD. Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg. Med. 2005; 36(1): 8-12. 34. Nishijima Y, Yamaguchi M, Kojima T, Aihara N, Nakajima R, Kasai K. Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on releases from periodontal ligament cells in vitro. Orthod. Craniofac. Res. 2006; 9 (2):63-70. 35. Peplow PV, Chung TY & Baxter GD. Laser photobiomodulation of wound healing: a review of experimental studies in mouse and rat animal models. Photomed. Laser Surg. 2010; 28(3); 291-325. 36. Pinheiro AL, Gerbi ME. Photoengineering of bone repair processes. Photomed. Laser Surg. 2006; 24:169-178 37. Reitan K. Selecting forces in orthodontics. Eur. Orthod. Soc. Trans. 1956; 32:108-126. 38. Saito S, Shimizu N. Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am. J. Orthod. Dentofacial Orthop. 1997; 111(5):525-32. 39. Samiei M, Pakdel SM, Rikhtegaran S, Shakoei S, Ebrahimpour D, Taghavi P. Scanning electron microscopy comparison of the cleaning efficacy of a root canal system by Nd:YAG laser and rotary instruments. Microsc. Microanal. 2014; 2:1-6. 40. Saquelli Peromo A, Orellana A. Alternativas de tratamiento para disminuir el dolor de origen ortodóntico. Rev. Latinoamericana Ortod. y Odontop. 2010; 14;:1–8. 41. Seifi M, Shafeei HA, Daneshdoost S, Mir M. Effects of two types of low-level laser wave lengths (850 and 630 nm) on the orthodontic tooth movements in rabbits. Lasers Med. Sci. 2007; 22:261-4. 42. Shirani AM, Gutknecht N, Taghizadeh M, Mir M. Low-level laser therapy and myofacial pain dysfunction syndrome: a random- ized controlled clinical trial. Lasers Med. Sci. 2009; 24(5):715–720 43. Snyder SK, Byrnes KR, Borke RC, Sanchez A & Anders JJ. Quantification of calcitonin gene-related peptide mRNA and neuronal cell death in facial motor nuclei following axotomy and 633nm low power laser treatment. Lasers Surg. Med. 2002; 31(3):216-222. 44. Tafur J. & Mills PJ. Low-intensity light therapy: Exploring the role of redox mechanisms. Photomed. Laser Surg. 2008; 26(4); 323-328. 45. Tong M, Liu YF, Zhao XN, Yan CZ, Hu ZR. & Zhang ZH. Effects of different wavelengths of low level laser irradiation on murine immunological activity and intracellular Ca2+ in human lymphocytes and cultured cortical neurogliocytes. Lasers Med. Sci. 2000; 15(3):201-206. 46. Torri S, Blessmann Weber JB. Influence of low-level laser therapy on the rate of the orthodontic movement: a literature review. Photomed. Laser Surg. 2013: 31(9).411-421. 47. Tortamano A, Lenzi DC, Haddad AC, Bottino MC, Domínguez GC, Vigorito JW. Low-level laser therapy for pain caused by placement of the first orthodontic archwire: A randomized clinical trial. Am. J. Orthod. Dentofacial Orthop. 2009; 136(5): 662-667. 48. Uematsu S, Mogi M, Deguchi T. Interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha, epidermal growth factor and beta-2 microglobulin levels are elevated in gingival crevicular fluid during orthodontic tooth movement. J. Dent. Res. 1996; 75(1):562-7. 49. Walker JB, Buring SM. NSAID impairment of orthodontic tooth movement. Ann. Pharmacother 2001; 35(1):113–115 50. Xiaoting L, Yin T, Yangxi C. Interventions for pain during fixed orthodontic appliance therapy. A systematic review. Angle Orthod. 2010; 80(5): 925-932. 51. Yamaguchi M. RANK/RANKL/OPG during orthodontic tooth movement. Orthod. Craniofac. Res. 2009; 12:113-9. 52. Youssef M, Ashkar S, Hamade E, Gutknecht N, Lampert F, Mir M. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Laser Med. Sci. 2008; 23(1):27–33