Publication:
Electron confinement in surface states on a stepped gold surface revealed by angle-resolved photoemission

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2001-09-03
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
STM images show that vicinal Au(788) surfaces are made up or a uniform array of (111)-oriented terraces of similar width (similar to3.8 nm). This uniformity makes it possible to study the electronic Structure of the resulting step superlattice by angle-resolved photoemission. We show that for this terrace array the surface state appears to be broken up into one-dimensional quantum-well levels, indicating total electron confinement within the terraces. The angular resolution allows the probability density of the terrace quantum well state to be mapped in reciprocal space, complementing nicely the wave function measured in real space by STM.
Description
© 2001 The American Physical Society. A. Mu., F. J. G. de A., and J. E. O. are supported by the Universidad del País Vasco (1/UPV/EHU/00057.240-EA-8078/2000) and the Max Planck Research Award Program. V. R. and S. R. are supported by the CNRS-ULTIMATECH program, the CRIF, and the Université de Paris 7. A. Ma. is supported by a Marie Curie Fellowship of the European Union, under Contract No. HPMF-CT-2000-00565. V. P.-D. is supported by the Comunidad Autónoma de Madrid (Project No. 07N/0042/98) and the DEFICIT (Spain) (Grant No. PB-97-1199). The experiments performed at LURE were funded by the Large Scale Facilities program of the European Union. Critical reading of the manuscript by F. J. Himpsel is acknowledged. Technical support from the Spanish-French beam line staff is gratefully acknowledged.
Unesco subjects
Keywords
Citation
[1] F. J. Himpsel, J. E. Ortega, G. J. Mankey, and R. F. Willis, Adv. Phys. 47, 511 (1998). [2] R. Nötzel and K. H. Ploog, Adv. Mater. 5, 22 (1993); R. Nötzel, Z. Niu, M. Ramsteimer, H. P. Schönherr, A. Trampert, L. Däweritz, and K. H. Ploog, Nature (London) 392, 56 (1998); P. Segovia, D. Purdie, M. Hegsberger, and Y. Baer, Nature (London) 402, 504 (1999). [3] J. E. Ortega, S. Speller, A. Bachmann, A. Mascaraque, E. G. Michel, A. Mugarza, A. Närmann, A. Rubio, and F. J. Himpsel, Phys. Rev. Lett. 84, 6110 (2000). [4] Ph. Avouris and I.-W. Lyo, Science 264, 942 (1994). [5] L. Bürgi, O. Jeandupeux, A. Hirstein, H. Brune, and K. Kern, Phys. Rev. Lett. 81, 5370 (1998). [6] X. Y. Wang, X. J. Shen, and R. M. Osgood, Jr., Phys. Rev. B 56, 7665 (1997). [7] F. Baumberger, T. Greber, and J. Osterwalder, Phys. Rev. B 62, 15 431 (2000). [8] J. Viernow, J.-L. Lin, D. Y. Petrovykh, F. M. Leibsle, F. K- Men, and F. J. Himpsel, Appl. Phys. Lett. 72, 948 (1998). [9] V. Repain, J. M. Berroir, B. Croset, S. Rousset, Y. Garreau, V. H. Etgens, and L. Lecoeur, Phys. Rev. Lett. 84, 5367 (2000). [10] This is the average of the different values found in the literature, that vary from 0.24 3 me to 0.28 3 me. The most recent photoemission study, S. LaShell, B. A. McDougall, and E. Jensen, Phys. Rev. Lett. 77, 3419 (1996), gives 0.25 3me. [11] The data points in Fig. 3 display some random variation within the error bars, which can be interpreted as a narrow bandwidth. From this bandwidth we can estimate an upper limit for the transmission probability across the step barrier using a simple one-dimensional Kronig-Penney model. We obtain a maximum value of |T| = 0.1 and |T| = 0.19 for the first and the second levels, respectively. [12] Our own measurement of E0,flat for Au(111) was also done at 300 K and agrees with the literature. See, for instance, R. Paniago, R. Matzdorf, G. Meister, and A. Goldmann, Surf. Sci. 336, 113 (1995). [13] W. Chen, V. Madhavan, T. Jamneala, and M. F. Crommie, Phys. Rev. Lett. 80, 1469 (1998). [14] F. J. García de Abajo et al. (to be published). 107601-4 1
Collections