Universidad Complutense de Madrid
E-Prints Complutense

Connections between ∞-Poincaré inequality, quasi-convexity, and N1,∞

Impacto

Descargas

Último año



Durand-Cartagena, Estibalitz y Jaramillo Aguado, Jesús Ángel y Shanmugalingam, Nageswari (2009) Connections between ∞-Poincaré inequality, quasi-convexity, and N1,∞. Prepublicacions del Centre de Recerca Matemàtica (895). (No publicado)

[img]
Vista previa
PDF
256kB

URL Oficial: http://www.recercat.cat/bitstream/handle/2072/47933/Pr895.pdf?sequence=1




Resumen

We study a geometric characterization of ∞−Poincaré inequality. We show that a path-connected complete doubling metric measure space supports an ∞−Poincaré inequality if and only if it is thick quasi-convex. We also prove that these two equivalent properties are also equivalent to the purely analytic property that N1,∞(X) = LIP∞(X), where LIP∞(X) is the collection of bounded Lipschitz functions on X and N1,∞(X) is the Newton-Sobolev space studied in [DJ].


Tipo de documento:Artículo
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:28477
Depositado:20 Feb 2015 11:35
Última Modificación:01 Feb 2016 14:49

Descargas en el último año

Sólo personal del repositorio: página de control del artículo