Publication:
Estudio comparativo de tres superficies de implantes dentales

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2014
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Description
Keywords
Citation
1. Carneiro‐Campos LE, Fernandes CP, Balduıíno A., Leite ME, Leitao M. The effect of titanium topography features on mesenchymal human stromal cells’ adhesion. Clin. Oral Impl. Res. 2010;21:250‐54. 2. Yan Guo C., Matinlinna JP y Tang AT. Effects of Surface Charges on Dental Implants: Past, Present, and Future. Int J Biomat 2012. 3. de Jonge L., Leeuwenburgh S., Wolke J., and John A. Jansen. Organic–Inorganic Surface Modifications for Titanium Implant Surfaces. Pharm Res, 2008;25(10):2357‐69. 4. Daood U., Bandey N., Bin‐Qasim S., Omar H. y Saad K. Surface characterization analysis of failed dental implants using scanning electron microscopy. Acta Odon Scan 2011;69:367‐73. 5. Abuhussein H., Pagni G., Rebaudi A. y WangH‐L. The effect of thread pattern upon implant osseointegration. Clin. Oral Impl. Res. 2010;21:129‐36. 6. Mamalis A., Markopoulou C., Vrotsos I. y Koutsilirieris M. Chemical modification of an implant surface increases osteogenesis and simultaneously reduces osteoclastogenesis: an in vitro study. Clin. Oral Impl. Res. 2011;22:619‐26. 7. Palmquist A., Omar M., Esposito M., Lausmaa J. y Thomsen P. Titaniun oral implants: surface characteristics, interface biology and clinical outcome. J R Soc Interface 2010;7:515‐27. 8. Tabassum A., Meijer G., Wolke J. y Jansen J. Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: a laboratory study. Clin. Oral Impl. Res. 2010;21:213‐20. 9. Bartold P‐M., Kuliwaba J‐S., Lee V., Shah S., Marino V. y Fazzalari N. L. Influence of surface roughness and shape on microdamage of the osseous surface adjacent to titanium dental implants. Clin. Oral Impl. Res. 2011;22:613–18. 10. Rodrigues C., Cándido A., Shimano A. y da Costa M. In vitro analysis of the influence of surface treatment of dental implants on primary stability. Braz Oral Res. 2012;26(4):313‐7. 11. Mamalis A. y Silvestros S. Analysis of osteoblastic gene expression in the early human mesenchymal cell response to a chemically modified implant surface: an in vitro study. Clin. Oral Impl. Res. 2011;22:530‐37. 12. Stanford C. Surface Modification of Biomedical and Dental Implants and the Processes of Inflammation, Wound Healing and Bone Formation. Int J Mol Sci. 2010;11:354‐69. 13. Gaviria L., Salcido JP., Guda T. y Ong J. Current trends in dental implants. Korean Assoc Oral Maxillofac Surg 2014;40:50‐60. 14. Conserva E., Menini M., Ravera G. y Pera P. The role of surface implant treatments on the biological behavior of SaOS‐2 osteoblast‐like cells. An in vitro comparative study. Clin. Oral Impl. Res. 2013;24:880‐89. 15. Meyer U., Büchter A., Wiesmann HP, Joos U., y Jones DB. Basic reactions of oseoblasts on structured material surfaces. Eur Cells Mat 2005;9:39‐49. 16. Novaes A., de Souza S., de Barros R., Pereira K., Lezzi G., y Piattelli A. Influence of Implant Surfaces on Osseointegration. Braz Dent J 2010;21(6):471‐81. 17. Hayes J., Khan I., Archer C. y Richards R. The role of surface microtopography in the modulation of osteoblast differentiation. Eur Cells and Mat 2010;20:98‐108. J Exp Zool (Mol Dev Evol) 2008,310. Disponible en www.interscience.wiley.com. 18. Annunziata M., Oliva A., Buosciolo A., Giordano M., Guida A. y Guida L. Bone marrow mesenchymal stem cell response to nano‐structured oxidized and turned titanium surfaces. Clin. Oral Impl. Res. 2012;23:733‐740. 19. Thakral GK, Thakra R., Sharma N., SethJ. y Vashisht P. Nansurface‐The Future of Implants. J Clin and D Res. 2014;8(5):7‐10. 20. Depprich R. y cols. Behavior of osteoblastic cells cultured on titanium and structured zirconia surfaces. Head & Face Medicine 2008,4:29‐37. 21. Gittens R. y cols. The effects of combined micron‐/submicron‐scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 2011;32(13): 3395‐403. 22. Ku CH, Pioletti D., Browne M. y Gregson P. Effect of different Ti–6Al–4V surface treatments on osteoblasts behaviour. Biomat 2002;23:1447‐54. 23. Rosa M., Albrektsson T., Francischone CE, Schwartz y Wennerberg A. The influence of surface treatment on the implant roughness pattern. J Appl Oral Sci. 2012;550‐55. 24. Da Silva JS, Campos S., Neves AO, Galvao CA, Alves C. y Tesconi A. Osteoblastlike Cell Adhesion on Titanium Surface Modifies by Plasma Nitriding. Int J Oral Maxillofac Implants 2011;26:237‐44. 25. Kim BS, Kim JS, Park JM, Choi BY, Lee J. Mg ion implantation on SLA‐treated titanium surface and its effects on the behavior of mesenchymal stem cell. Materials Sci and Eng C 2013;33:1554–1560. 26. Schmidlin P., Muller P., Attin T., Wieland M., Hofer D. y Guggenheim B. Polyspecies bioflm formation on implant surfaces with different surface characteristics. J Appl Oral Sci 2013;21(1):48‐55. 27. Mendoca G. y cols. The effects of implant surface nanoscale features on osteoblastspecific gene expression. Biomat 2009;30:4053‐62. 28. Kang B‐S. On the Bone Tissue Response to Surface Chemistry Modifications of Titanium Implants. Department of Biomaterials Institute of Clinical Sciences Sahlgrenska. Academy University of Gothenburg. 2011. Disponible en http://hdl.handle.net/2077/26273. 29. Kang BS, Sul YT, Johansson C., Oh SJ, Lee HJ y Albrektsson T. The effect of calcium ion concentration on the bone response to oxidized titanium implants. Clin. Oral Impl. Res. 2012;23:690–97. 30. Lavenus S., Louarn G. y Layrolle P. Nanotechnology and Dental Implants. Int J Biomat 2010. 31. Manresa C., Bosch M., Manzanares MC, Carvalho P., y Echevarría JJ. A new standardized‐automatic method for bone‐to‐implant contact histomorphometric analysis based on backscattered scanning electron microscopy images. Clin. Oral Impl. Res. 2014;25:702‐6. 32. Ehrenfest D., Coelho P., Kang B‐S., Sul Y‐T. y Albrektsson T. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends in Biotechnology 28(4). Disponible en 10.1016/j.tibtech.2009.12.003 33. Loberg J., Mattisson I. y Ahlberg E. Integrated biomechanical and topographical surface characterization (IBTSC). Applied Surface Science 2014;290:215‐22. 34. Lymperi S., Ligoudistianou C., Taraslia V., Kontakiotis Ε. y Anastasiadou Ε. Dental Stem Cells and their Applications in Dental Tissue Engineering. The Open Dent Jour 2013;7: 76‐81. 35. Egusa H., Sonoyama W., Nishimura M., Atsuta I. y Akiyama K. Stem cells in dentistry – Part I: Stem cell sources. Jour of Prost Res 2012;56:151‐65. 36. Volponi AA., Pang I. y Shape PT. Stem cell‐based biological tooth repair and regeneration. Trends in Cell Bio 2010;20(12):715‐22. 37. D’Aquino R. y cols. Human Mandible Bone Defect Repair By The Grafting Of Dental Pulp Stem/Progenitor Cells And Collagen Sponge Biocomplees. Eur Cells and Mat 2009;18:75‐83. 38. La Noce M. y cols. Dental pulp stem cells: State of the art and suggestions for a true translation of research into therapy. J Dent 2014;42:761‐68. 39. D’Aquino R. y cols. Human Dental Pulp Stem Cells: From Biology to Clinical Applications. J Exp Zool 2008. 40. Viña JA, El‐Alami M., Gambini J., Borras C., Viña J. y Peñarrocha MA. Application of mesenchymal stem cells in bone regenerative procedures in oral implantology. A literature review. J Clin Exp Dent. 2014;6(1):60‐5. 41. Egusa H., Sonoyama W., Nishimura M., Atsuta I. y Akiyama K. Stem cells in dentistry‐Part II: Clinical applications. Jour of Prost Res 2012;56:229‐48. 42. Balloni S., Calvi EM, Damiani F., Bistoni G., Calvitti M., Locci P. y cols. Effects if Titanium SurfaceRoughness on Messenchymal Stem Cell Commitment and Differentiation Signaling. Int J Oral Maxillofac Implants 2009;24:627‐35. 43. Lavenus S., Berreur M., Tricjet V., Pilet P., Louarn G. y Layrolle P. Adhesion and osteogenic differentiation of human mesenchymal stem cells on titanium nanopores. Eur Cells and Mat 2011;22:84‐96. 44. Chen WC, Kob ChL, Kuoc HN, Lind DJ, Wue HY, Yange L. y cols. Mineralization of Progenitor Cells with Different Implant Topographies. Por Eng 2012;36:173‐8. 45. Santander S. y cols. Retraction: In vitro osteoinduction of human mesenchymal stem cells in biomimetic surface modified titanium alloy implants. Dent Mat J 2014;31(5):843‐50. 46. Xing H., Komasa S., Taguchi Y., Sekino T. y Okazaki J. Osteogenic activity of titanium surfaces with nanonetwork structures. Int J Nanomed. 2014;9:1741‐55. 47. Ko YJ, Zaharias RS, Seabold DA, Lafoon JE y Schneider GB. Analysis of the Attachment and Differentiation of Three‐Dimensional Rotatory Wall Vessel Cultured Human Preosteoblasts an Dental Implant Surfaces. Int J Oral Maxillofac Implants 2010;25:722‐28. 48. Osathanon T., Bespinyowong K., Arksornnukit M., Takahashi H. y Pavasant P. Human osteoblastic‐like cell spreading and proliferation on Ti‐6Al‐7Nb surfaces of varying roughness. J Oral Sci. 2011;53(1):23‐30. 49. Ramaglia L., Postiglione L., di Spingna G., Capece G., Salzano S. y Rossi G. Sandblasted‐acid‐etched titanium surface influences in vitro the biological behavior of SaOS‐2 human osteoblast‐like cells. Dental Materials Journal 2011;30(2):183‐92. 50. Duddeck D., Iranpour S., Derman M., Neugebauer J. y Zöller J. Surface characteristics and quality of implants in sterile packaging. European Journal for Dental Implantologists 2013;1(9):48‐58. 51. Kubies D. y cols. The Interaction of Osteoblasts With Bone‐Implant Materials: 1. The Effect of Physicochemical Surface Properties of ImplantMaterials. Physiol. Res. 2011;60:95‐111. 52. Colombo JS, Carley A., Fleming G., Crean J., Sloan A. y Waddington RJ. Osteogenic Potential of Bone Marow Stromal Cells on Smooth, Roughened and Tricalcium Phospathe‐Modified Titanium Alloy Surfaces. Int J Oral Maxilloac Implants 2012;27:1029‐42.