Publication:
An alternative route to detect parity violating energy differences through Bose-Einstein condensation of chiral molecules

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Royal Society of Chemistry
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Interactions which do not conserve parity might influence chiral compounds giving rise to a parity violating energy difference (PVED) that might have affected the evolution towards homochirality. However, this tiny effect predicted by electroweak-quantum chemistry calculations is easily masked by thermal effects, making it desirable to reach cold regimes in the laboratory. As an alternative route to the detection of the PVED, we study a simplified model of Bose-Einstein condensation of a sample of non-interacting chiral molecules, showing that it leads to a nonzero optical activity of the condensate and also to a subcritical temperature in the heat capacity, due to the internal structure of the molecule characterized by tunneling and parity violation. This predicted singular behavior found for the specific heat, below the condensation temperature, might shed some light on the existence of the thus far elusive PVED between enantiomers.
Description
This journal is © the Owner Societies 2011. This work has been funded by the MEC (Spain) under projects CTQ2008-02578/BQU, FIS2007-62006 and FIS2007-65382, supported by grants BES-2006-11976 (P. B.) and BES-2006-7454 (R. P. de T.). P. B. dedicates this work to Anais Dorta-Urra for her help and encouragement during recent months.
Keywords
Citation
1 T. D. Lee and C. N. Yang, Phys. Rev., 1956, 104, 254. 2 C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes and R. P. Hudson, Phys. Rev., 1957, 105, 1413. 3 A. M. Bouchiat and C. C. Bouchiat, Rep. Prog. Phys., 1997, 60, 1351. 4 R. Zanasi, P. Lazzeretti, A. Ligabue and A. Soncini, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1999, 59, 3382. 5 J. K. Laerdahl, P. Schwerdtfeger and H. M. Quiney, Phys. Rev. Lett., 2000, 84, 3811. 6 J. Thyssen, J. K. Laerdahl and P. Schwerdtfeger, Phys. Rev. Lett., 2000, 85, 3105. 7 A. S. Lahamer, S. M. Mahurin, R. N. Compton, D. House, J. K. Laerdahl, M. Lein and P. Schwerdtfeger, Phys. Rev. Lett., 2000, 85, 4470. 8 F. Faglioni, P. S. D’Agostino, B. Cadioli and P. Lazzeretti, Chem. Phys. Lett., 2005, 407, 522. 9 F. Faglioni, A. Passalacqua and P. Lazzeretti, Origins Life Evol. Biosphere, 2005, 35, 461. 10 F. Faglioni, I. G. Cuesta and P. Lazzeretti, Chem. Phys. Lett., 2006, 432, 263. 11 P. Soulard, P. Asselin, A. Cuisset, J. R. Aviles Moreno, T. R. Huet, D. Petitprez, J. Demaison, T. B. Freedman, X. Cao, L. A. Nafie and J. Crassous, Phys. Chem. Chem. Phys., 2006, 8, 79. 12 D. Figgen and P. Schwerdtfeger, Phys. Rev. A: At., Mol., Opt. Phys., 2008, 78, 012511. 13 M. Quack, J. Stohner and M. Willeke, Annu. Rev. Phys. Chem., 2008, 59, 741. 14 D. Figgen, A. Koers and P. Schwerdtfeger, Angew. Chem. Int. Ed., 2010, 49, 2941. 15 C. Daussy, T. Marrel, A. Amy-Klein, C. T. Nguyen, C. J. Bordé and C. Chardonnet, Phys. Rev. Lett., 1999, 83, 1554. 16 J. Crassous, C. Chardonnet, T. Saue and P. Schwerdtfeger, Org. Biomol. Chem., 2005, 3, 2218. 17 A. Guijarro and M. Yus, The Origin of Chirality in the Molecules of Life, RSC Publishing, Cambridge, 2009. 18 A. J. MacDermott, T. Fu, R. Nakatsuka, A. P. Coleman and G. O. Hyde, Origins Life Evol. Biosphere, 2009, 39, 459. 19 V. V. Flambaum and J. S. M. Ginges, Phys. Rev. A: At., Mol., Opt. Phys., 2006, 74, 025601. 20 P. Blythe, B. Roth, U. Frohlich, H. Wenz and S. Schiller, Phys. Rev. Lett., 2005, 95, 183002. 21 J. M. Hudson and P. Soldan, Int. Rev. Phys. Chem., 2006, 25, 497. 22 J. M. Hudson and P. Soldan, Int. Rev. Phys. Chem., 2007, 26, 1. 23 L. D. Carr and J. Ye, New J. Phys., 2009, 11, 055049. 24 P. Bargueñ o, I. Gonzalo, R. Pérez de Tudela and S. Miret-Artés, Chem. Phys. Lett., 2009, 483, 204. 25 I. Gonzalo, P. Bargueñ o, R. Pérez de Tudela and S. Miret-Artés, Chem. Phys. Lett., 2010, 489, 127. 26 A. Salam, J. Mol. Evol., 1991, 33, 105. 27 A. Salam, Phys. Lett. B, 1992, 288, 153. 28 W. Wang, F. Yi, Z. Zhao, X. Jin and Y. Tang, J. Biol. Phys., 2000, 26, 51. 29 R. Sullivan, M. Pyda, J. Pak, B. Wunderlich, J. R. Thompson, R. Pagni, H. Pan, C. Barnes, P. Schwerdtfeger and R. Compton, J. Phys. Chem. A, 2003, 107, 6674. 30 C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases, Cambridge University Press, 2002. 31 R. A. Harris and L. Stodolsky, Phys. Lett. B, 1978, 78, 313. 32 M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Science, 1995, 269, 198. 33 C. A. Regal, C. Ticknor, J. L. Bohn and D. S. Jin, Nature, 2003, 424, 47. 34 R. P. Feynman, Statistical Mechanics, Advance Books Classics, Addison-Wesley, 1998. 35 R. K. Pathria, Statistical Mechanics, Pergamon Press, Oxford, 1972. 36 L. F. Lemmens, F. Brosens and J. T. Devreese, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, 61, 3358. 37 G.-L. Ingold, P. Hänggi and P. Talkner, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2009, 79, 061105.
Collections