Universidad Complutense de Madrid
E-Prints Complutense

Improving fuzzy classification by means of a segmentation algorithm

Impacto

Descargas

Último año

Amo, Ana del y Gomez, Daniel y Montero, Javier (2008) Improving fuzzy classification by means of a segmentation algorithm. In Fuzzy Sets and Their Extensions: Representation, Aggregation and Models. Studies in Fuzziness and Soft Computing, II (220). Springer, Berlin, pp. 453-471. ISBN 978-3-540-73722-3

[img] PDF
Restringido a Sólo personal autorizado del repositorio

2MB

URL Oficial: http://link.springer.com/chapter/10.1007%2F978-3-540-73723-0_23


URLTipo de URL
http://link.springer.com/Editorial


Resumen

In this chapter we consider remotely sensed images, where land surface should be classified depending on their uses. On one hand, we discuss the advantages of the fuzzy classification model proposed by Amo et al. (European Journal of Operational Research, 2004) versus standard approaches. On the other hand, we introduce a coloring algorithm by to Gòmez et al. (Omega, to appear) in order to produce a supervised algorithm that takes into account a previous segmentation of the image that pursues the identification of possible homogeneous regions. This algorithm is applied to a real image, showing its high improvement in accuracy, which is then measured.


Tipo de documento:Sección de libro
Materias:Ciencias > Matemáticas > Lógica simbólica y matemática
Código ID:29032
Depositado:05 Mar 2015 11:08
Última Modificación:20 Abr 2016 13:33

Descargas en el último año

Sólo personal del repositorio: página de control del artículo