Publication:
Comparison of different methodologies for obtaining nickel nanoferrites

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-06
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science Bv
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Nickel nanoferrites were obtained by means of four different synthetic wet-routes: co-precipitation (CP), sonochemistry (SC), sonoelectrochemistry (SE) and electrochemistry (E). The influence of the synthesis method on the structural and magnetic properties of nickel ferrite nanoparticles is studied. Although similar experimental conditions such as temperature, pH and time of synthesis were used, a strong dependence of composition and microstructure on the synthesis procedure is found, as electron microscopy, X-ray diffraction and Mössbauer spectroscopy studies reveal. Whereas by means of the CP and SC methods particles of a small size around 5–10 nm, respectively, and composed by different phases are obtained, the electrochemical routes (E and SE) allow obtaining monodisperse nanoparticles, with sizes ranging from 30 to 40 nm, and very close to stoichiometry. Magnetic characterization evidences a superparamagnetic behavior for samples obtained by CP and SC methods, whereas the electrochemical route leads to ferromagnetic ferrite nanoparticles.
Description
©2014 Elsevier B.V. All rights reserved. This investigation has been funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through MAT2012-37109-C02-01, MAT2012-37109-C02-02 and the CONSOLIDER CSD-00023 and ENE2010-21198-C04-04 Project. OBM thanks the financial support from the “Ramón y Cajal Program” of the MINECO.
Unesco subjects
Keywords
Citation
[1] J.R. McCarthy, R. Weissleder., Adv. Drug Deliv. Rev. 60 (2008) 1241–1251. [2] D. Huska, J. Hubalek, V. Adam, D. Vajtr, A. Horna, L. Trnkova, L. Havel, R. Kizek., Talanta 79 (2009) 402–411. [3] J. Esquivel, I.A. Facundo, M.E. Treviño, R.G. López., J. Mater. Sci. 42 (2007) 9015–9020. [4] Q.A. Pankhurts, J. Connolly, S.K. Jones, J. Dobson., J. Phys. D: Appl. Phys. 36 (2003) R167–R181. [5] G.F. Goya, V. Grazú, M.R. Ibarra, Curr. Nanosci. 4 (2008) 1–16. [6] R. Asmatulu, M.A. Zalich, R.O. Claus, J.S. Riffle, J. Magn. Magn. Mater. 292 (2005) 108–119. [7] Y.S. Kang, S. Risbud, J.F. Rabolt, P. Stroeve, Chem. Mater. 8 (9) (1996) 2209–2211. [8] S.H. Sun, H. Zeng, J. Am. Chem. Soc. 124 (28) (2002) 8204–8205. [9] R.J. Rennard, W.L. Kehl., J. Catal. 21 (1971) 282–286. [10] N. Tsubokawa, T. Kimoto, T. Endo., J. Mol., A Catal., Chemical 101 (1995) 45–49. [11] E. Manova, T. Tsoncheva, D. Paneva, J.L. Rehspringer., K. Tenchev, L. Mitov, L. Petrov., Appl. Catal. A: Gen 317 (2007) 34–38. [12] S.P. Ghorpade, V.S. Darshane, S.G. Dixit., Appl. Catal. A 166 (1998) 135–141. [13] Y. Mu, D. Jia, Y. He, Y. Miao, H. Wu., Biosens. Bioelectron. 26 (2011) 2948–2952. [14] R. Ramanathan, S. Sugunan., Catal. Commun. 8 (2007) 1521–1526. [15] C.G. Ramankutty, S. Sugunan, Appl. Catal. A: Gen. 218 (2001) 39–51. [16] S. Singh, K.C. Barick, D. Bahadur., J. Hazard. Mater. 192 (2011) 1539–1547. [17] J.F. Liu, Z-S. Zhao, G.B. Jiang, Environ. Sci. Technol. 42 (2008) 6949–6954. [18] Y.F. Shen, J. Tang, Z.H. Nie, Y.D Wang, Y. Ren, L. Zuo., Sep. Purif. Technol. 68 (2009) 312–319. [19] Li-H. Liu, H. Dietsch, P. Schurtenberger, M. Yan, Bioconjugate Chem. 20 (2009) 1349–1355. [20] A.E. Berkowitz, R.H. Kodama, S.A. Makhlouf, F.T. Parker, F.E. Spada, E.J. McNiff , S. Foner., J. Magn. Magn. Mater. 196–197 (1999) 591–594. [21] J. Zhang, J. Shi, M. Gong., J. Solid State Chem. 182 (2009) 2135–2140. [22] Y. Cheng, Y. Zheng, Y. Wang, F. Bao, Y. Qin., J. Solid State Chem. 178 (2005) 2394–2397. [23] S. Maensiri, C. Masingboon, B. Boonchomb, S. Seraphin., Scr. Mater. 56 (2007) 797–800. [24] S.A.S. Ebrahimi, J. Azadmanjiri., J. Non-Cryst. Solids 353 (2007) 802–804. [25] M.M. Rashad, O.A. Fouad., Mater. Chem. Phys. 94 (2005) 365–370. [26] A.S. Albuquerque, J.D. Ardisson, W.A.A. Macedo, J.L. López, R. Paniago, A.I.C. Persiano., J. Magn. Magn. Mater. 226–230 (2001) 1379–1381. [27] R.A. Brand, Nucl. Instrum. Methods Phys. Res. B 28 (1987) 398. [28] S. Maensiri, C. Masingboon, B. Boonchomb, S. Seraphin., Scr. Mater. 56 (2007) 797–800. [29] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, third ed., Prentice-Hall, Englewood Cliffs, NJ, 2001. [30] P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T González-Carreño, C.J. Serna., J. Phys D: Appl. Phys. 36 (2003) R182. [31] J. Zhang, J. Shi, M. Gong., J. Solid State Chem. 182 (2009) 2135–2140. [32] C.G. Ramankutty, S. Sugunan., Appl. Catal. A: Gen. 218 (2001) 39–51. [33] N.S. McIntyre, D.G. Zetaruk., Anal. Chem. 49 (1977) 1521–1526. [34] A. Aqil, H. Serwas, J.L. Delplancke, R. Jérôme, C. Jérôme, L. Canet., Ultrason. Sonochem. 15 (2008) 1055–1061. [35] E. Manova, T. Tsoncheva, D. Paneva, J.L. Rehspringer, K. Tenchev, I. Mitov, L. Petrov., App. Catal. A: Gen. 317 (2007) 34–42. [36] N.N. Greenwod, T.C. Gibb, Mössbauer Spectroscopy, Chapman and Hall Ltd, 1971. [37] R.N. Panda, N.S. Gajbhiye, G. Balaji., J. Alloys Compd. 326 (2001) 50–53. [38] S. Morup, J. Magn. Magn. Mater. 37 (1983) 39–50. [39] S. Morup, H. Topsoe., J. Magn. Magn. Mater. 31–34 (1983) 953–954. [40] K.K. Lian, D.W. Kirk, S.J. Thorpe., J. Electrochem. Soc. 142 (1995) 3704–3709. [41] J. Zhang, J. Shi, M. Gong., J. Solid State Chem. 182 (2009) 2135–2140. [42] C.G. Ramankutty, S. Sugunan., Appl. Catal. A: Gen. 218 (2001) 39–51.
Collections