Publication:
Generation of entangled matter qubits in two opposing parabolic mirrors

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014
Authors
Trautmann, N.
Bernád, J. Z.
Sondermann, M.
Alber, G.
Leuchs, Gerd
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We propose a scheme for the remote preparation of entangled matter qubits in free space. For this purpose, a setup of two opposing parabolic mirrors is considered, each one with a single ion trapped at its focus. To get the required entanglement in this extreme multimode scenario, we take advantage of the spontaneous decay, which is usually considered as an apparent nuisance. Using semiclassical methods, we derive an efficient photon-path representation to deal with this problem. We also present a thorough examination of the experimental feasibility of the scheme. The vulnerabilities arising in realistic implementations reduce the success probability, but leave the fidelity of the generated state unaltered. Our proposal thus allows for the generation of high-fidelity entangled matter qubits with high rate.
Description
©2014 American Physical Society. N.T., J.Z.B., and G.A. acknowledge support by the BMBF Project Q.com and CASED III. M.S. and G.L. are grateful for the financial support of the European Research Council under the Advanced Grant PACART. Finally, L.L.S.S. acknowledges support from the Spanish MINECO (Grant No. FIS2011- 26786).
Keywords
Citation
[1] M. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000). [2] H. J. Kimble, Nature (London) 453, 1023 (2008). [3] S. Olmschenk, D. Matsukevich, P. Maunz, D. Hayes, L. M. Duan, and C. Monroe, Science 323, 486 (2009). [4] J. Hofmann, M. Krug, N. Ortegel, L. Gérard, M. Weber, W. Rosenfeld, and H. Weinfurter, Science 337, 72 (2012). [5] S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe, Nature (London) 484, 195 (2012). [6] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. Blok, L. Robledo, T. Taminiau, M. Markham, D. Twitchen, L. Childress, and R. Hanson, Nature (London) 497, 86 (2013). [7] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002). [8] J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, Opt. Express 17, 11440 (2009). [9] R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. F ürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, Nat. Phys. 3, 481 (2007). [10] R. Maiwald, A. Golla, M. Fischer, M. Bader, S. Heugel, B. Chalopin, M. Sondermann, and G. Leuchs, Phys. Rev. A 86, 043431 (2012). [11] G. Leuchs and M. Sondermann, J. Mod. Opt. 60, 36 (2013). [12] M. Fischer, M. Bader, R. Maiwald, A. Golla, M. Sondermann, and G. Leuchs, Appl. Phys. B 117, 797 (2014). [13] D. Moehring, P. Maunz, S. Olmschenk, K. Younge, D. Matsukevich, L. M. Duan, and C. Monroe, Nature (London) 449, 68 (2007). [14] G. Alber, J. Z. Bernád, M. Stobinska, L. L. Sánchez Soto, and G. Leuchs, Phys. Rev. A 88, 023825 (2013). [15] P. W. Milonni and P. L. Knight, Phys. Rev. A 10, 1096 (1974). [16] M. Berry and K. Mount, Rep. Prog. Phys. 35, 315 (1972). [17] V. Maslov and M. Fedoriuk, Semi-Classical Approximation in Quantum Mechanics (Reidel, Dordrecht, 1981). [18] S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, Phys. Rev. A 76, 052314 (2007). [19] M. Stobinska, G. Alber, and G. Leuchs, Europhys. Lett. 86, 14007 (2009). [20] A. Rakić, A. Djuriśić, J. Elazar, and M. Majewski, Appl. Opt. 37, 5271 (1998). [21] M. Sondermann, N. Lindlein, and G. Leuchs, arXiv:0811.2098. [22] M. Lieb, Opt. Express 8, 458 (2001). [23] G. Leuchs, K. Mantel, A. Berger, H. Konermann, M. Sondermann, U. Peschel, N. Lindlein, and J. Schwider, Appl. Opt. 47, 5570 (2008). [24] A. April, B. Pierrick, and P. Michel, Opt. Express 19, 9201 (2011). [25] M. Sondermann and G. Leuchs, J. Eur. Opt. Soc. Rap. Public. 8, 13502 (2013). [26] J. Bergou, J. Mod. Opt. 57, 160 (2010). [27] S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, Phys. Rev. A 80, 022502 (2009). [ 28] W. C. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D. N. Matsukevich, P. Maunz, and C. Monroe, Phys. Rev. Lett. 105, 090502 (2010). [29] J. J. McLoughlin, A. H. Nizamani, J. D. Siverns, R. C. Sterling, M. D. Hughes, B. Lekitsch, B. Stein, S. Weidt, and W. K. Hensinger, Phys. Rev. A 83, 013406 (2011).
Collections