Universidad Complutense de Madrid
E-Prints Complutense

The Gaia-ESO Survey: the analysis of high-resolution UVES spectra of FGK-type stars



Downloads per month over past year

Tabernero, H. and González Hernández, J. I. and Montes Gutiérrez, David (2014) The Gaia-ESO Survey: the analysis of high-resolution UVES spectra of FGK-type stars. Astronomy and astrophysics, 570 . ISSN 0004-6361


Official URL: http://www.aanda.org/articles/aa/abs/2014/10/aa23937-14/aa23937-14.html



Context. The Gaia-ESO Public Spectroscopic Survey is obtaining high-quality spectroscopic data for about 10^5 stars using FLAMES at the VLT. With the FLAMES-UVES link, high-resolution spectra are being collected for about 5 000 FGK-type stars. Aims. These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO second internal release and will be part of its first public release of advanced data products. Methods. The final parameter scale is tied to the one defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. In addition, a set of open and globular clusters is used to evaluate the physical soundness of the results. Each of the implemented methodologies is judged against the benchmark stars to define weights in three di_erent regions of the parameter space. The final recommended results are the weighted-medians of those from the individual methods. Results. The recommended results successfully reproduce the benchmark stars atmospheric parameters and the expected Te_eff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55K for Te_eff, 0.13 dex for log g, and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50-100 K for Te_eff, 0.10-0.25 dex for log g, and 0.05-0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex. Conclusions. The Gaia-ESO sample of high-resolution spectra of FGK-type stars will be among the largest of its kind analyzed in a homogeneous way. The extensive list of elemental abundances derived in these stars will enable significant advances in the areas of stellar evolution and Milky-Way formation and evolution.

Item Type:Article
Additional Information:

© ESO, 2014. Acknowledgements. R.Sm., through an ESO fellowship, has received funding from the European Community’s Seventh Framework Programme (FP7/2007- 2013) under grant agreement No. 229517. A.J.K. and U.H. acknowledges support by the Swedish National Space Board (SNSB) through several grants. D.G. gratefully acknowledges support from the Chilean BASAL Centro de Excelencia en Astrofisica y Tecnologias Afines (CATA) grant PFB-06/2007. E.C., H.G.L., L.Sb. and S.D. acknowledge financial support by the Sonderforschungsbereich SFB 881 “The Milky Way System” (subprojects A2, A4, A5) of the German Research Foundation (DFG). I.S.R. gratefully acknowledges the support provided by the Gemini-CONICYT project 32110029. L.Sb. and S.D. acknowledge the support of Project IC120009 "Millennium Institute of Astrophysics (MAS)" of Iniciativa Científica Milenio del Ministerio de Economía, Fomento y Turismo de Chile. M.V. acknowledges financial support from Belspo for contract PRODEX COROT. P.B. acknowledges support from the PNCG of INSU CNRS. Part of the computations have been performed on the ’Mesocentre SIGAMM’ machine, hosted by Observatoire de la Cote d’Azur. P.d.L., V.H. and A.R. acknowledge the the support of the French Agence Nationale de la Recherche under contract ANR-2010-BLAN- 0508-01OTP and from the “Programme National de Cosmologie et Galaxies” (PNCG) of CNRS/INSU, France. S.G.S, E.D.M., and V.Zh.A. acknowledge support from the Fundação para a Ciência e Tecnologia (Portugal) in the form of grants SFRH/BPD/47611/2008, SFRH/BPD/76606/2011, SFRH/BPD/70574/2010, respectively. S.Vi. gratefully acknowledges the support provided by FONDECYT reg. n. 1130721. T.B. was funded by grant No. 621-2009-3911 from The Swedish Research Council. T.Mo. acknowledges financial support from Belspo for contract PRODEX GAIA-DPAC. We acknowledge the support from INAF and Ministero dell’ Istruzione, dell’ Università’ e della Ricerca (MIUR) in the form of the grant "Premiale VLT 2012". This work was partly supported by the European Union FP7 program through ERC grant number 320360 and by the Leverhulme Trust through grant RPG-2012-541. The results presented here benefit from discussions held during the Gaia-ESO workshops and conferences supported by the ESF (European Science Foundation) through the GREAT Research Network Program. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, of NASA’s Astrophysics Data System, of the compilation of atomic lines from the Vienna Atomic Line Database (VALD), and of the WEBDA database, operated at the Department of Theoretical Physics and Astrophysics of the Masaryk University.

Uncontrolled Keywords:Methods: data analysis; Surveys; Stars: abundances; Stars: fundamental parameters; Stars: late-type
Subjects:Sciences > Physics > Astrophysics
Sciences > Physics > Astronomy
ID Code:29238
Deposited On:17 Mar 2015 18:05
Last Modified:10 Dec 2018 15:05

Origin of downloads

Repository Staff Only: item control page