Publication:
Intensity of the geomagnetic field in Europe for the last 3 ka: Influence of data quality on geomagnetic field modeling

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-06-24
Authors
Gomez Paccard, Mirian
Gwenael, Gwenael
Chauvin, Annick
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
AmerAmerican Geophysical Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
One of the main challenges of paleomagnetic research is to obtain high-resolution geomagnetic field intensity reconstructions. For the last millennia, these reconstructions are mostly based on archeomagnetic data. However, the quality of the intensity data available in the databases is very variable, and the high scatter observed in the records clearly suggests that some of them might not be reliable. In this work we investigate how the geomagnetic field intensity reconstructions and, hence, our present knowledge of the geomagnetic field in the past, are affected by the quality of the data selected for modeling the Earth’s magnetic ield. For this purpose we rank the European archeointensity data in four quality categories following widely accepted paleomagnetic criteria based on the methodology used during the laboratory treatment of the samples and on the number of specimens retained to calculate the mean intensities. Four geomagnetic field regional models have been implemented by applying the revised spherical cap harmonic analysis to these four groups of input data. Geomagnetic field models strongly depend on the used data set. The model built using all the available data (without any preselection) appears to be the less accurate, indicating some internal inconsistencies of the data set. In addition, some features of this model are clearly dominated by the less reliable archeointensity data, suggesting that such features might not reflect real variations of the past geomagnetic field. On the contrary, the regional model built on selected high-quality intensity data shows a very consistent intensity pattern at the European scale, confirming that the main intensity changes observed in Europe in the recent history of the geomagnetic field occurred at the continental scale.
Description
© 2014 American Geophysical Union. We would like to express our thanks to the paleomagnetic community for the effort of providing the archeo/ paleomagnetic data and the construction and updating of useful databases. We are very grateful for the review and helpful comments of Ron Shaar and a second anonymous referee. This work has been carried out within the Spanish Research Project CGL2011–24790 financed by the Spanish Ministry of Economy and Competitiveness. Financial support to this research was also given by the post doc positions ME-Fulbright CT-2010-0663 and ‘‘Assegno di Ricerca’’ INGV - Roma2 (FJPC) and Marie Curie Intra European Fellowship IEF-2012 (MGP). E. Thebault is acknowledged for providing the software of the Mehler functions of the R-SCHA2D
UCM subjects
Unesco subjects
Keywords
Citation
Bard, E., and G. Delaygue (2008), Comment on ‘‘Are there connections between the Earth’s magnetic field and climate?’’ by V. Courtillot et al. (Earth and Planetary Science Letters, 253, 328, 2007), Earth Planet. Sci. Lett., 265, 302–307. Ben-Yosef, E., H. Ron, L. Tauxe, A. Agnon, A. Genevey, T. E. Levy, and U. Avner (2008), Application of copper slag in archeointensity research, J. Geophys. Res., 113, B08101, doi:10.1029/2007JB005235. Ben-Yosef, E., L. Tauxe, T. E. Levy, R. Shaar, H. Ron, and M. Najjar (2009), Geomagnetic intensity spike recorded in high resolution slag deposit in southern Jordan, Earth Planet. Sci. Lett., 287, 529–539. Bowles, J., J. Gee, J. Hildebrand, and L. Tauxe (2002), Archaeomagnetic intensity results from California and Ecuador: Evaluation of regional data, Earth Planet. Sci. Lett., 203, 967–981. Burlatskaya S.P., and Z. A. Chelidze (1987), Geomagnetic field variations in Georgia from the third millennium B.C. to the first millennium A.D., Izv. Earth Phys., Engl. Transl., 23, 774–778. Catanzariti, G., M. Gomez-Paccard, G. McIntosh, F. J. Pav on-Carrasco, A. Chauvin, and M. L. Osete (2012), New archaeomagnetic data recov- ered from the study of Roman and Visigothic remains from central Spain (3rd-7th centuries), Geophys. J. Int., 188, 979–993. Chauvin, A., Y. Garcia, P. Lanos, and F. Laubenheimer (2000), Paleointensity of the geomagnetic field recovered on archaeomagnetic sites from France, Phys. Earth Planet. Inter., 120, 111–136. Courtillot, V., Y. Gallet, J.-L. Le Mouel, F. Fluteau, and A. Genevey (2007), Are there connections between the Earth’s magnetic field and climate?, Earth Planet. Sci. Lett., 253, 328–339. De Marco, E., V. Spatharas, M. Gomez-Paccard, A. Chauvin, and D. Kondopoulou (2008), New archaeointensity results from archaeological sites and variation of the geomagnetic field intensity for the last 7 millennia in Greece, Phys. Chem. Earth, 33, 578–595. Donadini, F., K. Korhonen, P. Riisager, and L. Pesonen (2006), Database for Holocene geomagnetic intensity information, Eos Trans. AGU, 87(14), 137. Donadini, F., M. Korte, and C. G. Constable (2009), Geomagnetic field for 0–3 ka: 1. New data sets for global modeling, Geochem. Geophys. Geosyst., 10, Q06007, doi:10.1029/2008GC002295. Donadini, F., M. Kovacheva, and M. Kostadinova (2010), Archaeomagnetic study of ancient Roman lime kilns (1c. AD) and one pottery kiln (1c. BC–1c. AD) at Krivina, Bulgaria, as a contribution to archeomagnetic dating, Archeol. Bulgarica, XIV(2), 213–225. Dunlop, D.J. (2011), Physical basis of the Thellier-Thellier and related paleointensity methods Phys. Earth Planet. Inter., 187(3–4), 118–138. Ertepinar, P., C. G. Langereis, A. J. Biggin, M. Frangipane, T. Matney, T. Okse, and A. Engin (2012), Archaeomagnetic study of five mounds from Upper Mesopotamia between 2500 and 700 BCE: Further evidence for an extremely strong geomagnetic field ca. 3000 years ago, Earth Planet. Sci. Lett., 357–358, 84–98. Finlay, C. C. (2008), Historical variation of the geomagnetic axial dipole, Phys. Earth Planet. Inter., 170, 1–14. Finlay, C. C., et al. (2010), International Geomagnetic Reference Field: The eleventh generation, Geophys. J. Int., 183, 1216–1230. Gallet, Y., A. Genevey, and F. Fluteau (2005), Does Earth’s magnetic field secular variation control centennial climate change?, Earth Planet. Sci. Lett., 236, 339–347. Gallet, Y., A. Genevey, M. Le Goff, N. Warme, J. Gran-Aymerich, and A. Lefêvre (2009), On the use of archeology in geomagnetism, and viceversa: Recent developments in archeomagnetism, C. R. Phys., 10, 630–648. Games, K. P. (1977), The magnitude of the paleomagnetic field: A new non-thermal, non-detrital method using sun-dried bricks, Geophys. J. R. Astron. Soc., 48, 315. Genevey, A., Y. Gallet, C. G. Constable, M. Korte, and G. Hulot (2008), ArcheoInt: An upgraded compilation of geomagnetic field intensity data for the past ten millennia and its application to the recovery of the past dipole moment, Geochem. Geophys. Geosyst., 9, Q04038, doi:10.1029/2007GC001881. Genevey, A., Y. Gallet, J. Rosen, and M. Le Goff (2009), Evidence for rapid geomagnetic field intensity variations in Western Europe over the past 800 years from new French archeointensity data, Earth Planet. Sci. Lett., 284, 132–143. Genevey, A., Y. Gallet, E. Thebault, S. Jesset, and M. Le Goff (2013), Geomagnetic field intensity variations in Western Europe over the past 1100 years, Geochem. Geophys. Geosyst., 14, 2858–2872. Gomez-Paccard, M., A. Chauvin, P. Lanos, J. Thiriot, and P. Jim enez-Castillo (2006), Archeomagnetic study of seven contemporaneous kilns from Murcia (Spain), Phys. Earth Planet. Inter., 157, 16–32. Gomez-Paccard, M., A. Chauvin, P. Lanos, and J. Thiriot (2008), New archeointensity data from Spain and the geomagnetic dipole moment in western Europe over the past 2000 years, J. Geophys. Res., 113, B09103, doi:10.1029/2008JB005582. Gomez-Paccard, M., et al. (2012a), Improving our knowledge of rapid geomagnetic field intensity changes observed in Europe between 200 and 1400 AD, Earth Planet. Sci. Lett., 355–356, 131–143. Gomez-Paccard, M., G. McIntosh, A. Chauvin, E. Beamud, F. J. Pav on-Carrasco, and J. Thiriot 2012b), Archaeomagnetic and rock magnetic study of six kilns from North Africa (Tunisia and Morocco), Geophys. J. Int., 189(1), 169–186. Gomez-Paccard, M., E. Beamud, G. McIntosh, and J. C. Larrasoaña (2013), New archaeomagnetic data recovered from the study of three Roman kilns from North-East Spain: A contribution to the Iberian palaeosecular variation curve, Archaeometry, 55(1), 159–177. Gram-Jensen, M., N. Abrahamsen, and A. Chauvin (2000), Archeomagnetic intensity in Denmark, Phys. Chem. Earth, 25, 525–531. Gubbins, D., A. L. Jones, and C. C. Finlay (2006), Fall in Earth’s magnetic field is erratic, Science, 312(5775), 900–902. Haines, G. V. (1985), Spherical cap harmonic analysis, J. Geophys. Res., 90(B3), 2583–2591. Herve, G., E. Schnepp, A. Chauvin, P. Lanos, and N. Nowaczyk (2011), Archaeomagnetic results on three Iron Age salt-kilns from Moyenvic (France), Geophys. J. Int., 185, 144–156. Herve, G., A. Chauvin, and P. Lanos (2013), Geomagnetic field variations in Western Europe from 1500 BC to 200 AD. Part II: New intensity secular variation curve, Phys. Earth Planet. Inter., 218, 51–65. Jackson, A., A. R. T. Jonkers, and M. R. Walker (2000), Four centuries of geomagnetic secular variation from historical records, Philos. Trans. R. Soc. London A, 358, 957–990. Jonkers, A. R. T., A. Jackson, and A. Murray (2003), Four centuries of geomagnetic data from historical records, Rev. Geophys., 41(2), 1006, doi:10.1029/2002RG000115. Korhonen, K., F. Donadini, P. Riisager, and L. Pesonen (2008), GEOMAGIA50: An archeointensity database with PHP and MySQL, Geochem. Geophys. Geosyst., 9, Q04029, doi:10.1029/2007GC001893. Korte, M., and C. G. Constable (2003), Continuous global geomagnetic field models for the past 3000 years, Phys. Earth Planet. Inter., 140(1), 73–89. Korte, M., and C. G. Constable (2005), Continuous geomagnetic field models for the past 7 millenia: 2. CALS7K, Geochem. Geophys. Geosyst., 6, Q02H16, doi:10.1029/2004GC000801. Korte, M., F. Donadini, and C. G. Constable (2009), Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models, Geochem. Geophys. Geosyst., 10, Q06008, doi:10.1029/2008GC002297. Korte, M., and C. G. Constable (2011), Improving geomagnetic field reconstructions for 0–3 ka, Phys. Earth Planet. Inter., 188, 247–259. Korte, M., C. G. Constable, F. Donadini, and R. Holmes (2011), Reconstructing the Holocene geomagnetic field, Earth Planet. Sci. Lett., 312, 497–505. Kovacheva, M., Y. Boyadziev, M. Kostadinova-Avramova, N. Jordanova, and F. Donadini (2009a), Updated archeomagnetic data set of the past 8 millennia from the Sofia laboratory, Bulgaria, Geochem. Geophys. Geosyst., 10, Q05002, doi:10.1029/2008GC002347. Kovacheva, M., Chauvin, A., Jordanova, N., Lanos, P. and Karloukovski, V. (2009b), Remanence anisotropy effect on the palaeointensity results obtained from various archaeological materials, excluding pottery, Earth Planets Space, 61, 711–732. Lanos, Ph. (2004), Bayesian inference of calibration curves: Application to archaeomagnetism in Tools for Constructing Chronologies: Crossing Disciplinary Boundaries, edited by C. Buck and A. Millard, vol. 177, pp. 43–82, Springer, London, U. K. Le Goff, M., and Y. Gallet (2004), A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements: Applications to paleo- and archeointensity determinations, Earth Planet. Sci. Lett., 229, 31–43. Leonhardt, R., J. Matzka, A. R. L. Nichols, and D. B. Dingwell (2006), Cooling rate correction for paleointensity determination for volcanic glasses by relaxation geospeedometry, Earth Planet. Sci. Lett., 243, 282–292. Licht, A., G. Hulot, Y. Gallet, and E. Thebault (2013), Ensembles of low degree archeomagnetic field models for the past three millennia, Phys. Earth Planet. Inter., 224, 38–67. McClelland-Brown, E. (1984), Experiments on TRM intensity dependence on cooling rate, J. Geophys. Res., 11, 205–208. Muscheler, R., F. Joos, J. Beer, S. A. Muller, M. VonMoos, and I. Snowball (2007), Solar activity during the last 1000 yr inferred from radionuclide records, Q. Sci. Rev., 26, 82–97. Nachasova, I. E., and K. S. Burakov (2009), Variation of the intensity of the Earth s magnetic field in Portugal in the 1st millenium BC, Phys. Solid Earth, 45, 54–62. Neel, L. (1955), Some theoretical aspects of rock-magnetism, Adv. Phys., 4, 191–243. Pavon-Carrasco, F. J., M. L. Osete, J. M. Torta, and L. R. Gaya-Pique (2009), A regional archeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3K: Applications to archeomagnetic dating, Geochem. Geophys. Geosyst., 10, Q03013, doi:10.1029/2008GC002244. Pavon-Carrasco, F. J., M. L. Osete, and J. M. Torta (2010), Regional modeling of the eomagnetic field in Europe from 6000 to 1000 BC, Geochem. Geophys. Geosyst., 11, Q11008, doi:10.1029/2010GC003197. Pavon-Carrasco, F. J., J. Rodr ıguez-Gonzalez, M. L. Osete, and J. M. Torta (2011), A Matlab tool for archaeomagnetic dating, J. Archaeol. Sci. 38, 408–419. Pavon-Carrasco, F. J., M. L. Osete, J. M. Torta, and A. De Santis (2014), A geomagnetic field model for the Holocene based on archaeomag- netic and lava flow data, Earth Planet. Sci. Lett., 388, 98–109. Prevosti, M., L. Casas, J. F. Roig Perez, B. Fouzai, A. Alvarez, and A. Pitarch (2013), Archaeological and archaeomagnetic dating at a site from the ager Tarraconensis (Tarragona, Spain): El Vila-sec Roman pottery, J. Archaeol. Sci., 40(6), 2686–2701. Roberts, A. P., L. Tauxe, and D. Heslop (2013), Magnetic paleointensity stratigraphy and high-resolution Quaternary geochronology: Successes and future challenges, Quat. Sci. Rev., 61, 1–16. Schnepp, E., P. Lanos, and A. Chauvin (2009), Geomagnetic Paleointensity between 1300 and 1750 AD derived from a bread oven floor sequence in Lubeck, Germany, Geochem. Geophys. Geosyst., 10, Q08003, doi:10.1029/2009GC002470. Shaar, R., H. Ron, L. Tauxe, R. Kessel, A. Agnon, E. Ben-Yosef, and J. M. Feinberg (2010), Testing the accuracy of absolute intensity estimates of the ancient geomagnetic field using copper slag material, Earth Planet. Sci. Lett., 290, 201–213. Shaar, R., E. Ben-Yosef, H. Ron, L. Tauxe, A. Agnon, and R. Kessel (2011), Geomagnetic field intensity: How high can it get? How fast can it change? Constraints from Iron copper slag, Earth Planet. Sci. Lett., 301, 297–306. Shaw, J. (1974), A new method of determining the magnitude of the palaeomagnetic field: Application to five historic lavas and five archaeological samples, Geophys. J. R. Astron. Soc., 39, 133–141. Spatharas, V., D. Kondopoulou, E. Aidona, and K. G. Efthimiadis (2011), New magnetic mineralogy and archaeointensity results from Greek kilns and baked clays, Stud. Geophys. Geod., 55, 132–157. Suttie, N., R. Holme, M. J. Hill, and J. Shaw (2011), Consistent treatment of errors in archaeointensity implies rapid decay of the dipole prior to 1840, Earth Planet. Sci. Lett., 304, 13–21. Tauxe, L. (2009), Essentials of Paleomagnetism: Web Edition, Scripps Inst. of Oceanogr., La Jolla, Calif. Tema, E., and D. Kondopoulou (2011), Secular variation of the Earth’s magnetic field in the Balkan region during the last eight millennia based on archaeomagnetic data, Geophys. J. Int., 186, 603–614. Tema, E., M. Gomez-Paccard, D. Kondopoulou, and Y. Almar (2012), Intensity of the Earth’s magnetic field in Greece during the last five mil- lennia: New data from Greek pottery, Phys. Earth Planet. Inter., 202–203, 14–26. Tema, E., C. Fantino, E. Ferrara, A. Lo Giudice, J. Morales, A. Goguitchaichvili, P. Camps, F. Barello, and M. Gulmini (2013a), Combined archaeomagnetic and thermoluminescence study of a brick kiln excavated at Fontanetto Po (Vercelli, Northern Italy), J. Archaeol. Sci., 40, 2025–2035. Tema, E., J. Morales, A. Goguitchaichvili, and P. Camps (2013b), New archaeointensity data from Italy and geomagnetic field intensity variation in the Italian Peninsula, Geophys. J. Int., 193, 603–614. Thebault, E. (2008), A proposal for regional modelling at the Earth’s surface, R-SCHA2D, Geophys. J. Int., 174, 118–134. Thebault, E., and Y. Gallet (2010), A bootstrap algorithm for deriving the archeomagnetic field intensity variation curve in the Middle East over the past 4 millennia BC, Geophys. Res. Lett., 37, L22303, doi:10.1029/2010GL044788. Thebault, E., J. J. Schott, M. Mandea, and J. P. Hoffbeck (2004), A new proposal for Spherical Cap Harmonic Analysis, Geophys. J. Int., 159, 83–105. Thebault, E., J. J. Schott, and M. Mandea (2006), Revised spherical cap harmonic analysis (R-SCHA): Validation and properties, J. Geophys. Res., 111, B01102, doi:10.1029/2005JB003836. Thellier, E. (1938), Sur l’aimantation des terres cuites et ses applications geophysiques, Ann. Inst. Phys. Globe Paris, 16, 157–302. Thellier, E., and O. Thellier (1959), Sur l’intensite du champ magnetique terrestre dans le passé historique et geologique, Ann. Geophys., 15, 285–376. Usoskin, I. G. (2013), A history of solar activity over millennia, Living Rev. Solar Phys., 10, 1. Veitch, R. J., G. Hedley, and J. J. Wagner (1984), An investigation of the intensity of the geomagnetic field during Roman times using magnetically anisotropic bricks and tiles, Arch. Sc. Geneve, 37, 359–373. Wollin, G., D. B. Ericson, and W. B. F. Ryan (1978), Climatic changes, magnetic intensity variations and fluctuations of eccentricity of Earth’s orbit during past 2,000,000 years and mechanism which may be responsible for relationship, Earth Planet. Sci. Lett., 41, 395–397.
Collections