Publication:
Río Tinto: a geochemical and mineralogical terrestrial analogue of Mars

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-09-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Multidisciplinary Digital Publishing Institute
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The geomicrobiological characterization of the water column and sediments of Río Tinto (Huelva, Southwestern Spain) have proven the importance of the iron and the sulfur cycles, not only in generating the extreme conditions of the habitat (low pH, high concentration of toxic heavy metals), but also in maintaining the high level of microbial diversity detected in the basin. It has been proven that the extreme acidic conditions of Río Tinto basin are not the product of 5000 years of mining activity in the area, but the consequence of an active underground bioreactor that obtains its energy from the massive sulfidic minerals existing in the Iberian Pyrite Belt. Two drilling projects, MARTE (Mars Astrobiology Research and Technology Experiment) (2003–2006) and IPBSL (Iberian Pyrite Belt Subsurface Life Detection) (2011–2015), were developed and carried out to provide evidence of subsurface microbial activity and the potential resources that support these activities. The reduced substrates and the oxidants that drive the system appear to come from the rock matrix. These resources need only groundwater to launch diverse microbial metabolisms. The similarities between the vast sulfate and iron oxide deposits on Mars and the main sulfide bioleaching products found in the Tinto basin have given Río Tinto the status of a geochemical and mineralogical Mars terrestrial analogue.
Description
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).This revision has been supported by the ERC project ERC250350-IPBSL
Unesco subjects
Keywords
Citation
1. Des Marais, D.J.; Nuth, J.A.; Allamandola, L.J.; Boss, A.P.; Farmer, J.D.; Hoehler, T.M.; Jakosky, B.M.; Meadows, V.S.; Pohorille, A.; Runnegar, B.; et al. The NASA Astrobiology Roadmap. Astrobiology 2008, 8, 715–730. 2. Margulis, L.; Mazur, P.; Barghoorn, E.S.; Halvorson, H.O.; Jukes, T.H.; Kaplan, I.R. The Viking Mission: Implications for life in the Vallis Marineris area. J. Mol. Evol. 1979, 14, 223–232. 3. Johnson, D.B.; Hallberg, K.B. The microbiology of acidic mine waters. Res. Microbiol. 2003, 154, 466–473. 4. Ehrlich, H.L.; Newman, D.K. Geomicrobiology, 5th ed.; CRC Press: Boca Ratón, FL, USA, 2008. 5. Sand, W.; Gehrke, T.; Hallma, R.; Schippers, A. Sulfur chemistry, biofilm and the (in) direct attack mechanisms—A critical evaluation of bacterial leaching. Appl. Microbiol. Biotech. 1995, 43, 961–966. 6. Sand, W.; Gehrke, T.; Jozsa, P.G.; Schippers, A. Biochemistry of bacterial leaching—Direct vs.indirect bioleaching. Hydrometall 2001, 59, 159–175. 7. Colmer, A.R.; Temple, K.L.; Hinkle, H.E. An iron-oxidizing bacterium from the acid drainage of some bituminous coal mines. J. Bacteriol. 1950, 59, 317–328. 8. Pronk, J.T.; Bruyn, J.C.; Bos, P.; Kuenen, J.G. Anaerobic growth of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 1992, 58, 2227–2230. 9. Amils, R.; González-Toril, E.; Gómez, F.; Fernández-Remolar, D.; Rodríguez, N.; Malki, M.; Zuluaga, J.; Aguilera, A.; Amaral-Zettler, L.A. Importance of chemolithotrophy for early life on Earth: The Tinto River (Iberian Pyritic Belt) case. In Origins; Seckbach, J., Ed.; Springer: Amsterdam, the Netherlands, 2004; pp. 463–480. 10. Rawlings, D.E. Heavy metal mining using microbes. Annu. Rev. Microbiol. 2002, 56, 65–91. 11. Benz, M.; Brune, A.; Schink, B. Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Arch. Microbiol. 1998,169, 159–165. 12. Widdel, F.; Schnell, S.; Heising, S.; Ehrenreich, A.; Assmus, B.; Schink, B. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 1993, 162, 834–836. 13. Godd, T. The deep hot biosphere. Proc. Nat. Acad. Sci. USA 1992, 89, 6045–6049. 14. Bachofen, R.; Ferloni, P.; Flynn, L. Microorganisms in the subsurface. Microbiol. Res. 1998, 153, 1–22. 15. Pedersen, K. Exploration of deep intraterrestrial microbial life: Current perspectives. FEMS Microbiol. Lett. 2000, 185, 9–16. 16. Chapelle, F.H.; O’Nelly, K.; Bradley, P.M.; Methé, B.A.; Ciufo, S.A.; Knobel, L.L.; Lovley, D.R. A hydrogen-based subsurface microbial community dominated by methanogens. Nature 2002, 415, 312–315. 17. Leblanc, M.; Morales, J.A.; Borrego, J.; Elbaz-Poulichet, F. 4500-year-old mining pollution in Southwestern Spain: Long-Term implications for modern mining pollution. Econ. Geol. 2000, 95, 655–662. 18. López-Archilla, A.I.; Marín, I.; Amils, R. Microbial community composition and ecology of an acidic aquatic environment: The Tinto River, Spain. Microbiol. Ecol. 2001, 41, 20–35. 19. Amaral-Zettler, L.A.; Gómez, F.; Zettler, E.; Keenan, B.G.; Amils, R.; Sogin, M.L. Microbiology: Eukaryotic diversity in Spain’s River of Fire. Nature 2002, 417, 137, doi:10.1038/417137a. 20. González-Toril, E.; LLobet-Brosa, E.; Casamayor, E.O.; Amann, R.; Amils, R. Microbial ecology of an extreme acidic environment, the Tinto River. Appl. Environ. Microbiol. 2003, 69, 4853–4865. 21. Boulter, C.A. Did both extensional tectonics and magmas act as major drivers of convection cells during the formation of the Iberian Pyrite Belt massive sulphide deposits? J. Geol. Soc. London 1996, 153, 181–184. 22. Leistel, J.M.; Marcoux, E.; Theiblemont, D.; Quesada, C.; Sánchez, A.; Almodóvar, G.R.; Pascual, E.; Saez, R. The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Miner. Depos. 1997, 33, 2–30. 23. Lescuyer, J.L.; Leistel, J.M.; Mrcoux, E.; Milési, J.P.; Thiéblemont, D. Late Devonian-Early Carboniferous peak sulphide mineralization in the Western Hercynides. Miner. Depos. 1997, 33, 208–220. 24. González-Toril, E.; Aguilera, A.; Rodríguez, N.; Fernández-Remolar, D.; Gómez, F.; Díaz, E.; García-Moyano, A.; Sanz, J.L.; Amils, R. Microbial ecology of Río Tinto, a natural extreme acidic environment of biohydrometallurgical interest. Hydrometall 2010, 104, 329–333. 25. García-Moyano, A.; González-Toril, E.; Aguilera, A.; Amils, R. Prokaryotic community composition and ecology of macroscopic floating filaments from an extreme acidic environment, Río Tinto, (SW, Spain). Syst. Appl. Microbiol. 2007, 30, 601–614. 26. García-Moyano, A.; González-Toril, E.; Aguilera, A.; Amils, R. Comparative microbial ecology study of the sediments and the water column of the Río Tinto, an extreme acidic environment. FEMS Microbiol. Ecol. 2012, 81, 303–314. 27. Ohmura, N.; Sasaki, K.; Matsumoto, N.; Saiki, H. Anaerobic respiration using Fe3+, S0 and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. J. Bacteriol. 2002, 18, 2081–2087. 28. Malki, M.; González-Toril, E.; Sanz, J.L.; Gómez, F.; Rodríguez, N.; Amils, R. Importance of the iron cycle in biohydrometallurgy. Hydrometall 2006, 83, 223–228. 29. Coupland, K.; Johnson, D.B. Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbiol. Lett. 2008, 279, 30–35. 30. Malki, M.; de Lacey, A.L.; Rodríguez, N.; Amils, R.; Fernández, V.M. Preferential use of an anode as an electron acceptor by an acidophilic bacterium in the presence of oxygen. Appl. Environ. Microbiol. 2008, 74, 4472–4476. 31. Sánchez-Andrea, I.; Rodríguez, N.; Amils, R.; Sanz, J.L. Microbial diversity in anaerobic sediments at Río Tinto, a naturally acidic environment with high heavy metal content. Appl. Environ. Microbiol. 2011, 77, 6085–6093, doi:10.1128/AEM.00654–11. 32. Sánchez-Andrea, I.; Rojas-Ojeda, P.; Amils, R.; Sanz, J.L. Screening of anaerobic activities in sediments of an acidic environment: Tinto River. Extremophiles 2012, 16, 829–839. 33. Sánchez-Andrea, I.; Stams, A.J.M.; Amils, R.; Sanz, J.L. Enrichment and isolation of acidophilic sulfate-reducing bacteria from Tinto River sediments. Environ. Microbiol. Rep. 2013, 5, 672–678, doi:10.1111/1758–2229.12066. 34. Lu, S.; Gischkat, S.; Reiche, M.; Akob, D.M.; Hallberg, K.B.; Küsel, K. Ecophysiology of Fe-cycling bacteria in acidic sediments. Appl. Environ. Microbiol. 2010, 76, 8174–8183. 35. Hallberg, K.B.; Johnson, D.B. Biodiversity of acidophilic prokaryotes. Adv. Appl. Microbiol. 2001, 49, 37–84. 36. González-Toril, E.; Gómez, F.; Malki, M.; Amils, R. The Isolation and Study of Acidophilic Microorganisms. In Extremophiles, Methods in Microbiology; Rainey, F.A., Oren, A., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2006; Volume 35, pp. 471–510. 37. Rawlings, D.E. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb. Cell Factor. 2005, 4, 13–28. 38. Aguilera, A.; Manrubia, S.C.; Gómez, F.; Rodríguez, N.; Amils, R. Eukaryotic community distribution and its relationship to water physicochemical parameters in an extreme acidic environment, Río Tinto (Southwestern Spain). Appl. Environ. Microbiol. 2006, 72, 5325–5330 39. Aguilera, A.; Zettler, E.; Gómez, F.; Amaral-Zettler, L.; Rodríguez, N.; Amils, R. Distribution and seasonal variability in the benthic eukaryotic community of Río Tinto (SW, Spain), and acidic, high metal extreme environment. Syst. Appl. Microbiol. 2007, 30, 531–546. 40. Amaral-Zettler, L.; Zettler, E.R.; Theroux, S.M.; Palacios, C.; Aguilera, A.; Amils, R. Microbial community structure across the tree of life in the extreme Río Tinto. ISME J. 2010, 5, 42–50, doi:10.1038/ismej.2010.101. 41. López-Archilla, A.I.; González, A.E.; Terrón, M.C.; Amils, R. Diversity and ecological relationships of the fungal populations of an acidic river of Southwestern Spain: The Tinto River. Can. J. Microbiol. 2005, 50, 923–934. 42. Rodríguez, N.; Menéndez, N.; Tornero, J.; Amils, R.; de la Fuente, V. Internal iron biomineralization in Imperata cylindrica, a perennial grass: Chemical composition, speciation and plant localization. New Phytol. 2005, 165, 781–789. 43. De la Fuente, V.; Rufo, L.; Rodríguez, N.; Amils, R.; Zuluaga, J. Metal accumulation screening of the Río Tinto flora (Huelva, Spain). Biol. Trace Elem. Res. 2010, 134, 318–341. 44. Franco, A.; Rufo, L.; Rodríguez, N.; Amils, R.; de la Fuente, V. Iron absorption, localization and biomineralization of Cynodon. dactylon, a perennial grass from the Río Tinto basin (SW Iberian Peninsula). J. Plant Nutr. Soil Sci. 2013, 176, 836–842. 45. Amils, R.; de la Fuente, V.; Rodríguez, N.; Zuluaga, J.; Menéndez, N.; Tornero, J. Composition, speciation and distribution of iron minerals in Imperata cylindrica. Plant Physiol. Biochem. 2007, 45, 335–340. 46. De la Fuente, V.; Rodríguez, N.; Amils, R. Immunocytochemical analysis of the subcellular distribution of ferritin in Imperata cylindrica (L.) Raeuschel, an iron hyperaccumulator plant. Acta Histochim. 2012, 114, 232–236. 47. Fernández-Remolar, D.C.; Rodríguez, N.; Gómez, F.; Amils, R. Geological record of an acidic environment driven by iron hydrochemistry: The Tinto River system. J. Geophys. Res. 2003, 108, doi:10.1029/2002JE001918. 48. Fernández-Remolar, D.C.; Morris, R.V.; Gruener, J.E.; Amils, R.; Knoll, A.H. The Rio Tinto Basin, Spain: Mineralogy, sedimentary geobiology and implications for interpretation of ourcrop rocks of meridiani Planum, Mars. Earth Planet Sci. Lett. 2005, 240, 149–167. 49. Fernández-Remolar, D.C.; Knoll, A.H. Fossilization potential of iron-bearing minerals in acidic environments of Rio Tinto, Spain: Implications for Mars exploration. Icarus 2008, 194, 72–85. 50. Amils, R.; González-Toril, E.; Fernández-Remolar, D.; Gómez, F.; Aguilera, A.; Rodríguez, N.; Malki, M.; García-Moyano, A.; González-Fairén, A.; de la Fuente, V.; et al. Extreme environments as Mars terrestrial analogs: The Río Tinto case. Planet Space Sci. 2007, 55, 370–381. 51. Oggerin, M.; Tornos, F.; Rodríguez, N.; del Moral, C.; Sánchez-Román, M.; Amils, R. Specific jarosite biomineralization by Purpureocillium. lilacinum, an acidophilic fungi isolated from Río Tinto. Environ. Microbiol. 2013, 15, 2228–2237. 52. Fernández-Remolar, D.C.; Preston, L.J.; Sánchez-Román, M.; Izawa, M.R.M.; Huang, L.; Southam, G.; Banerjee, N.R.; Osinski, G.R.; Flemming, R.; Gómez-Ortíz, D.; et al. Carbonate precipitation under bulk acidic conditions as a potential biosignature for searching life on Mars. Earth Planet Sci. Lett. 2012, 351, 13–26. 53. Sánchez-Román, M.; Fernández-Remolar, D.; Amils, R.; Sánchez-Navas, A.; Schmid, T.; Martín-Uriz, P.S.; Rodríguez, N.; McKenzie, J.A. Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions. Sci. Rep. 2014, 4, doi:10.1038/srep04767. 54. Colín-García, M.; Kanawati, B.; Harir, M.; Schmidt-Kopplin, P.; Amils, R.; Parro, V.; García, M.; Fernández-Remolar, D. Detection of peptidic sequences in the ancient acidic sediments of Río Tinto, Spain. Orig. Life Evol. Biosph. 2011, 41, 523–527. 55. Preston, L.; Shuster, J.; Fernández-Remolar, D.; Banerjee, N.; Osinski, G.R.; Southam, G. The preservation and degradation of filamentous bacteria and biomolecules within iron oxide deposits at Rio Tinto, Spain. Geobiology 2011, 9, 233–249. 56. Geen, A.; van Adkins, J.F.; Boyle, E.A.; Nelson, C.H.; Palanques, A. A 120-yr record of widespread contamination from mining of the Iberian Pyrite Belt. Geology 1997, 25, 291–294. 57. Gómez-Ortiz, D.; Fernández-Remolar, D.; Granda, A.; Quesada, C.; Granda, T.; Prieto-Ballesteros, O.; Molina, A.; Amils, R. Identification of the subsurface sulfide bodies responsible for acidity in Río Tinto source water, Spain. Earth Plant. Sci. Lett. 2014, 391, 36–41. 58. Fernández-Remolar, D.; Gómez, F.; Prieto-Ballesteros, O.; Schelble, R.T.; Rodríguez, N.; Amils, R. Some ecological mechanisms to generate habitability in planetary subsurface areas by chemolithotrophic communities: The Río Tinto subsurface ecosystem as a model system. Astrobiology 2008, 8, 157–173. 59. Moreno, C.; Capitán, M.A.; Doyle, M.; Nieto, J.M.; Ruiz, F.; Sáez, R. Edad mínima del gossan de Las Cruces: Implicaciones sobre la edad del inicio de los ecosistemas extremos en la Faja Pirítica Ibérica. Geogaceta 2003, 33, 67–70. (In Spainish) 60. Gómez, F.; Aguilera, A.; Amils, R. Soluble ferric iron as an effective protective agent against UV radiation: implications for early life. Icarus 2007, 191, 352–359. 61. Gómez; F.; Mateo-Martí, E.; Prieto.Ballesteros, O.; Martín-Gago, J.; Amils, R. Protection of chemolithotrophic bacteria exposed to Mars environmental conditions. Icarus 2010, 209, 482–487, doi:10.1016/j.icarus.2010.05.027. 62. Archibald, F. Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol. Lett. 1983, 19, 29–32. 63. Martin, J.H. Glacial-interglacial CO2 change: The iron hypothesis. Paleooceanography 1990, 5, 1–13. 64. Boyd, W.P.; Jickells, T.; Law, C.S.; Blain, S.; Boyle, E.A.; Buesseler, K.O.; Coale, K.H.; Cullen, J.J.; de Baar, H.J.W.; Follows, M.; et al. Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions. Science 2007, 315, 612–617. 65. Reid, R.T.; Live, D.H.; Faulkner, D.J.; Buttler, A. A siderophore from a marine bacterium with an exceptional ferric iron affinity constant. Nature 1993, 366, 455–458. 66. Braun, V.; Killmann, H. Bacterial solution to the iron supply problems. Trends Biochem. Sci. 1999, 24, 104–109. 67. Gómez, F.; Fernández-Remolar, D.; González-Toril, E.; Amils, R. The Tinto River, an Extreme Gaian Environment. In Scientists Debate Gaia 2000; Margulis, L., Miller, J., Boston, P., Schneider, S., Crist, C., Eds.; MIT Press: Boston, MA, USA, 2003; pp. 321–333. 68. Anbar, A.D.; Knoll, A.H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge. Science 2002, 297, 1137–1142. 69. Fernández-Remolar, D.; Prieto-Ballesteros, O.; Rodríguez, N.; Gómez, F.; Amils, R.; Gomez-Elvira, J.; Stoker, C. Underground habitats found in the Río Tinto Basin: A model for subsurface life habitats on Mars. Astrobiology 2008, 8, 1023–1046. 70. Puente-Sánchez, F.; Moreno-Paz, M.; Rivas, L.A.; Cruz-Gil, P.; García-Villadangos, M.; Gómez, M.J.; Postigo, M.; Garrido, P.; González-Toril, E.; Briones, C.; et al. Deep subsurface sulfate reduction and methanogenesis in the Iberian Pyrite Belt revealed through geochemistry and molecular biomarkers. Geobiology 2014, 12, 34–47. 71. Squyres, S.W.; Crotzinger, J.P.; Arvidson, R.E.; Bell, J.F., III; Calvin, W.; Christensen, P.R.; Clark, B.C.; Crisp, J.A.; Farrand, W.H.; Herkenhoff, K.E.; et al. In situ evidence for an ancient aqueous environment in Meridiani Planum, Mars. Science 2004, 306, 1709–1714. 72. Klingelhöfer, G.; Morris, R.V.; Bernhardt, B.; Schröder, C.S.; de Souza, P.A., Jr.; Yen, A.; Gellert, R.; Evlanov, E.N.; Zubkov, B.; Foh, J.; et al. Jarosite and hematite at Meridiani Planum from the Mössbauer spectrometer on the Opportunity rover. Science 2005, 306, 1740–1745. 73. Milliken, R.E.; Swayze, G.A.; Arvidson, R.E.; Bishop, J.L.; Clark, R.N.; Ehlmann, B.L.; Green, R.O.; Grotzinger, J.P.; Morris, R.V.; Murchie, S.L.; et al. Opaline silica in young deposits on Mars. Geology 2008, 36, 847–850. 74. Farrand, W.H.; Glotch, T.D.; Rice, J.W.; Hurowitz, J.A.; Swayze, G. Discovery of jarosite within Mawrth Vallis region of Mars: Implications for the geological history of the region. Icarus 2009, 204, 478–488. 75. Ehdmann, B.L.; Mustard, J.F. An in-situ record of major environmental transitions on early Mars at Northeast Syrtis Major. Geophys. Res. Lett. 2012, 39, doi:10.1029/2012GL051594. 76. Fairen, A.G.; Fernández-Remolar, D.; Dohm, J.M.; Baker, V.R.; Amils, R. Inhibition of carbonate synthesis in acidic oceans from Mars. Nature 2004, 431, 423–426. 77. Zolotov, M.; Shock, E. Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at the Meridiani Planum, Mars. Geophys. Res. Lett. 2005, 32, doi:10.1029/2005GL024253. 78. Christensen, P.R.; Bandfield, J.L.; Clark, R.N.; Edgett, K.S.; Hamilton, V.E.; Hoefen, T.; Kieffer, H.H.; Kuzmin, R.O.; Lane, M.D.; Malin, M.C.; et al. Detection of crystalline hematite mineralization on Mars by the thermal emission spectrometer evidence for near-surface water. J. Geophys. Res. 2000, 104, 9623–9642. 79. Christensen, P.R.; Morris, R.V.; Lane, M.D.; Banfield, J.L.; Malin, M.C. Global mapping of martian hematite mineral deposits: remnants of water-driven processes on early Mars. J. Geophys. Res. 2001, 106, 23873–23885. 80. Christensen, P.R.; Ruff, S.W. Formation of the hematite-bearing unit in Meridiani Planum: Evidence for deposition in standing water. J. Geophys. Res. Planet. 2004, 109, E08003. 81. Rieder, R.; Gellert, R.; Anderson, R.C.; Brückner, J.; Clark, B.C.; Dreibus, G.; Economou, T.; Klingelhöfer, G.; Lugmair, G.W.; Ming, D.W.; et al. Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray spectrometer. Science 2004, 306, 1746–1749. 82. McLennan, S.M.; Bell, J.F., III; Calvin,W.M.; Christensen, P.R.; Clark, B.C.; de Souza, P.A.; Farmer, J.; Farrand, W.H.; Fike, D.A.; Gellert, R.; et al. Provenance and diagenesis of the Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 2005, 240, 95–121. 83. Bigham, J.M.; Schwertmann, U.; Traina, S.J.; Winland, R.L.; Wolf, M. Schwertmannite and the chemical modelling of iron in acid sulphate waters. Geochim. Cosmochim. Acta 1996, 60, 2111–2121. 84. Knoll, A.H.; Carr, M.; Clark, B.; Des Marais,.D.J.; Farmer, J.D.; Fische, W.W.; Grotzinger, J.P.; McLennan, S.M.; Malin, M.; Schröder, C.; et al. An astrobiological perspective on Meridiani Planum. Earth Planet. Sci. Lett. 2005, 240, 179–189. 85. Grotzinger, J.P.; Arvidson, R.E.; Bell, J.F., III; Calvin, W.; Clark, B.C.; Fike, D.A.; Golombek, M.; Greeley, R.; Haldemann, A.; Herkenhoff, K.E.; et al. Stratigraphy, sedimentology and depositional environment of the Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 2005, 240, 11–72. 86. Formisano, V.; Atreya, S.; Encrenaz, T.; Ignatiev, N.; Giuranna, M. Detection of methane in the atmosphere of Mars. Science 2004, 306, 1758–1761. 87. Mumma, M.J.; Villanueva, G.L.; Novak, R.E.; Hewagama, T.; Bonev, B.P.; DiSanti, M.A.; Mandell, A.; Smith, M.D. Strong release of methane on Mars in Northen Summer 2003. Science 2009, 323, 1041–1045. 88. Kotsyurbenko, O.R.; Friedrich, M.W.; Simankova, M.V.; Nozhenvnikova, A.N.; Golyshin, P.N.; Timmis, K.N.; Conrad, R. Shift from acetoclastic to H2 dependent methanogenesis in a West Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Appl. Environ. Microbiol. 2007, 73, 2344–2348. 89. Taconi, K.A.; Zappi, M.E.; French, W.T.; Brown, L.R. Methanogenesis under acidic pH conditions in a semi-continuous reactor system. Bioresour.Technol. 2008, 99, 8075–8081. 90. Sanz, J.L.; Rodríguez, N.; Díaz, E.; Amils, R. Methanogenesis in the sediments of Río Tinto, an extreme acidic environment. Environ. Microbiol. 2011, 13, 2336–2341. 91. Jakosky, B.M.; Haberle, R.M. The Seasonal Behavior of Water on Mars. In Mars; Kieffer, H.H., Ed.; University of Arizona Press: Tucson, AZ, USA, 1992; pp.969–1016. 92. Carr, M.H. Retention of an atmosphere on early Mars. J. Geophys. Res. 1999, 104, 21897–21909. 93. Boynton, W.V.; Feldman, W.C.; Squyres, S.W.; Prettyman, T.H.; Brückner, J.; Evans, L.G.; Reedy, R.C.; Starr, R.; Arnold, J.R.; Drake, D.M.; et al. Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science 2002, 297, 81–85. 94. Bibring, J.P.; Langevin, Y.; Gendrin, A.; Gondet, B.; Poulet, F.; Berthé, M.; Soufflot, A.; Arvidson, R.; Mangold, N.; Mustard, J.; et al. Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 2005, 307, 1576–1581. 95. Smith, P.H.; Tamppari, L.K.; Arvidson, R.E.; Bass, D.; Blaney, D.; Boynton, W.V.; Carswell, A.; Catling, D.C.; Clark, B.C.; Duck, T.; et al. H2O at the Phoenix landing site. Science 2009, 325, 58–61. 96. Parker, T.J.; Gorsline, D.S.; Saunders, R.S.; Pieri, D.C.; Schneeberger, D.M. Coastal geomorphology of the martian northern plains. J. Geophys. Res. 1993, 98, 11061–11078. 97. Malin, M.C.; Edgett, K.S. Sedimentary rocks of early Mars. Science 2000, 290, 1927–1937. 98. Malin, M.C.; Edgett, K.S. Evidence for persistent flow and aqueous sedimentation on early Mars. Science 2003, 302, 1931–1934. 99. Fairén, A.G.; Dohm, J.M.; Baker, V.R.; de Pablo, M.A.; Ruiz, J.; Ferris, J.; Anderson, R. Episodic flood inundations of the northern plains of Mars. Icarus 2003, 165, 53–67. 100. Fairén, A.G. A cold and wet Mars. Icarus 2010, 208, 165–175. 101. Bhattacharya, J.P.; Payenberg, T.H.D.; Lang, S.C.; Bourke, M. Dynamic river channels suggest a long-lived Noachian crater lake on Mars. Geophys. Res. Lett. 2005, 32, doi:10.1029/2005GL022747. 102. Poulet, F.; Bibring, J.P.; Mustard, J.F.; Gendrin, A.; Mangold, N.; Langevin, Y.; Arvidson, R.E.; Gondet, B.; Gómez, C.; the Omega Team. Phyllosilicates on Mars and implications for early martian climate. Nature 2005, 438, 623–627. 103. Heldmann, J.L.; Toon, O.B.; Pollard, W.H.; Mellon, M.T.; Pitlick, J.; McKay, C.P.; Andersen, D.T. Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions. J. Geophys. Res. 2005, 110, doi:10.1029/2004JE002261. 104. Baldridge, A.M.; Hook, S.J.; Crowley, J.K.; Marion, G.M.; Kargel, J.S.; Michalski, J.L.; Thomson, B.J.; de Souza Filho, C.R.; Bridges, N.T.; Brown, A.J.; et al. Contemporaneous deposition of phyllosilicates and sulfates: Using Australin acidic lake deposits to describe geochemical variability on Mars. Geophys. Res. Lett. 2009, 36, doi:10.1029/2009GL040069. 105. Benison, K.O.; LaClair, D.A. Modern an ancient extremely acid saline deposits: Terrestrial analogs for martian environments. Astrobiology 2003, 3, 609–618. 106. Michel, F.A.; Everdingen, R.O. Formation of jarosite deposits on Cretaceous shales in the Fort Norman area, Northwest Territories. Can. Mineral. 1987, 25, 221–226. 107. Lacelle, D.; Levillé, R. Acid drainage generation and associated Ca-Fe-SO4 minerals in a periglacial environment, Eagle Plains, Northen Yukon, Canada: A potential analogue for low-temperature sulfate formation on Mars. Planet. Space Sci. 2010, 5, 509–521. 108. Batller, M.W.; Osinki, G.R.; Lim, D.S.S.; Dávila, A.F.; Michel, F.A.; Craig, M.A.; Izawa, M.R.M.; Leoni, L.; Slater, G.F.; Fairén, A.G.; et al. Characterization of the acidic cold seep emplaced jarosite: Golden Deposit, NWT, Canada, as an analogue for jarosite deposition on Mars. Icarus 2012, 242, 382–398. 109. West, L.; McGovern, D.J.; Onston, T.C.; Morris, R.V.; Suchecki, P.; Pratt, L.M. High Lake gossan deposit: An Artic analogue for ancient Martian surficial processes? Plant. Sapce. Sci. 2009, 57, 1302–1311. 110. Dold, B.; González-Toril, E.; Aguilera, A.; López-Pamo, E.; Cisternas, M.E.; Bucchi, F.; Amils, R. Acid Rock Drainage and Rock Weathering in Antarctica: important sources for iron cycling in the Southern Ocean. Environ. Sci. Technol. 2013, 47, 6129–6136, doi:10.1021/es305141b.
Collections