Publication:
Generation of uniform synthetic magnetic fields by split driving of an optical lattice

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-08-29
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We describe a method to generate a synthetic gauge potential for ultracold atoms held in an optical lattice. Our approach uses a time-periodic driving potential based on quickly alternating two Hamiltonians to engineer the appropriate Aharonov-Bohm phases, and permits the simulation of a uniform tunable magnetic field. We explicitly demonstrate that our split-driving scheme reproduces the behavior of a charged quantum particle in a magnetic field over the complete range of field strengths, and obtain the Hofstadter butterfly band structure for the Floquet quasienergies.
Description
©2014 American Physical Society. The authors thank Wolfgang Ketterle, Maciej Lewenstein, Juliette Simonet, and Monika Aidelsburger for stimulating discussions. This research was supported by the Spanish MINECO through Grant No. FIS-2010-21372.
Unesco subjects
Keywords
Citation
[1] I. Bloch, J. Dalibard, and S. Nascimbène, Nat. Phys. 8, 267 (2012). [2] B. Wunsch, F. Guinea, and F. Sols, New J. Phys. 10, 103027 (2008). [3] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Nature (London) 483, 302 (2012). [4] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Phys. Rev. Lett. 106, 220402 (2011). [5] D. Jaksch and P. Zoller, Ann. Phys. (NY) 315, 52 (2005). [6] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976). [7] Y. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto, and I. B. Spielman, Nature (London) 462, 628 (2009); J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Rev. Mod. Phys. 83, 1523 (2011). [8] D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003); E. J. Mueller, Phys. Rev.A70, 041603 (2004); F. Gerbier and J. Dalibard, New J. Phys. 12, 033007 (2010). [9] A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman, G. Juzeliūnas, andM. Lewenstein, Phys. Rev. Lett. 112, 043001 (2014). [10] K.W. Madison, F. Chevy,W.Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000); J. Abo-Shaeer, C. Raman, J. Vogels, and W. Ketterle, Science 292, 476 (2001). [11] F. Grossmann, T. Dittrich, P. Jung, and P. H¨anggi, Phys. Rev. Lett. 67, 516 (1991). [12] H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, and E. Arimondo, Phys. Rev. Lett. 99, 220403 (2007). [13] C. Sias, H. Lignier, Y. P. Singh, A. Zenesini, D. Ciampini, O. Morsch, and E. Arimondo, Phys. Rev. Lett. 100, 040404 (2008). [14] C. E. Creffield, F. Sols, D. Ciampini, O. Morsch and E. Arimondo, Phys. Rev. A 82, 035601 (2010). [15] C. E. Creffield and F. Sols, Phys. Rev. Lett. 100, 250402 (2008). [16] C. E. Creffield and F. Sols, Phys. Rev. A 84, 023630 (2011). [17] S. Longhi, Opt. Lett. 38, 3570 (2013). [18] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewenstein, K. Sengstock, and P.Windpassinger, Phys. Rev. Lett. 108, 225304 (2012). [19] P. Hauke, O. Tieleman, A. Celi, C. Ölschläger, J. Simonet, J. Struck, M. Weinberg, P. Windpassinger, K. Sengstock, M. Lewenstein, and A. Eckardt, Phys. Rev. Lett. 109, 145301 (2012). [20] A. R. Kolovsky, Europhys. Lett. 93, 20003 (2011). [21] C. E. Creffield and F. Sols, Europhys. Lett. 101, 40001 (2013). [22] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013). [23] M. Aidelsburger,M. Atala,M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013). [24] L. Wang and M. Troyer, Phys. Rev. A 89, 011603(R) (2014). [25] A. Eckardt, T. Jinasundera, C. Weiss, and M. Holthaus, Phys. Rev. Lett. 95, 200401 (2005). [26] E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichs¨ollner, and H.-C. N¨agerl, Phys. Rev. Lett. 104, 200403 (2010). [27] K. Kudo and T. S. Monteiro, Phys. Rev. A 83, 053627 (2011). [28] This cancellation of phases is a general feature of lattices with parallel-sided plaquettes, such as square and hexagonal lattices. It does not, however, apply to triangular lattices, which is why a nonzero (albeit staggered) flux could be observed in Ref. [19]. [29] A. S. Sørensen, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 94, 086803 (2005). [30] This form of flipping the sign of the acceleration was used in the resonant driving experiments of Ref. [13]. [31] M. Suzuki, Phys. Lett. A 146, 287 (1990). [32] A. R. Kolovsky, F. Grusdt, and M. Fleischhauer, Phys. Rev. A 89, 033607 (2014). [33] S. Burger, F. S. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M. L. Chiofalo, and M. P. Tosi, Phys. Rev. Lett. 86, 4447 (2001). [34] M. Grifoni and P. Hänggi, Phys. Rep. 304, 229 (1998). [35] D. Hügel and B. Paredes, Phys. Rev. A 89, 023619 (2014). [36] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys. Rev. B 82, 235114 (2010).
Collections