Publication:
Seebeck nanoantennas for the detection and characterization of infrared radiation

Research Projects
Organizational Units
Journal Issue
Abstract
Arrays of metallic thermocouples in the shape of spiral nanoantennas are proposed as infrared detectors, which use the thermoelectric properties of the metallic interfaces to generate electrical DC signals. The responsivity of these types of antennas is evaluated from both theoretical and numerical perspectives pointing out its potential as infrared sensors. Moreover, the same structures can be used to characterize the state of polarization of the optical near fields with a spatial resolution comparable to the wavelength.
Description
This paper was published in [Optics Express] and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: [http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S6-A1538]. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.
Keywords
Citation
1. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005). 2. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011). 3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). 4. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89(25), 253104 (2006). 5. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008). 6. S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9(10), 3447–3452 (2009). 7. P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012). 8. G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012). 9. Z. Ma and G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013). 10. D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun 2, 267 (2011). 11. F. J. González, B. Ilic, J. Alda, and G. D. Boreman, “Antenna-Coupled Infrared Detectors for Imaging Applications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 117–120 (2005). 12. C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. González, and G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000). 13. F. González and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005). 14. P. Krenz, J. Alda, and G. Boreman, “Orthogonal infrared dipole antenna,” Infrared Phys. Technol. 51(4), 340–343 (2008). 15. C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998). 16. S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, and M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Proceeding of IEEE Radio Frequency Integrated Circuits Symposium, (Honolulu, HI, 2007), pp. 171–174. 17. S. Grover and G. Moddel, “Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers,” Solid-State Electron. 76(1), 94–99 (2012). 18. N. Alimardani and J. F. Conley, Jr., “Step tunneling enhanced asymmetry in asymmetric electrode metalinsulator-insulator-metal tunnel diodes,” Appl. Phys. Lett. 102(14), 143501 (2013). 19. J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antennacoupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009). 20. E. Briones, J. Alda, and F. J. González, “Conversion efficiency of broad-band rectennas for solar energy harvesting applications,” Opt. Express 21(3), A412–A418 (2013). 21. Z. Zhu, S. Joshi, S. Grover, and G. Moddel, “Graphene geometric diodes for terahertz rectennas,” J. Phys. D Appl. Phys. 46(18), 185101 (2013). 22. U. Dillner, E. Kessler, and H.-G. Meyer, “Responsivity and detectivity modeling of thermal radiation sensors based on a biased thermocouple,” J. Phys. D Appl. Phys. 44(30), 305102 (2011). 23. G. P. Szakmany, P. M. Krenz, A. O. Orlov, G. H. Bernstein, and W. Porod, “Antenna-Coupled Nanowire Thermocouples for Infrared Detection,” IEEE Trans. NanoTechnol. 12(2), 163–167 (2013). 24. G. P. Szakmany, P. M. Krenz, L. C. Schneider, A. O. Orlov, G. H. Bernstein, and W. Porod, “Nanowire Thermocouple Characterization Platform,” IEEE Trans. NanoTechnol. 12(3), 309–313 (2013). 25. M. Bareis, P. M. Krenz, G. P. Szakmany, B. N. Tiwari, D. Kalblein, A. O. Orlov, G. H. Bernstein, G. Scarpa, B. Fabel, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “Rectennas Revisited,” IEEE Trans. NanoTechnol. 12(6), 1144–1150 (2013). 26. D. M. Rowe, Thermoelectrics Handbook: Macro to Nano (Taylor and Francis, 2006). 27. A. Graf, M. Arndt, M. Sauer, and G. Gerlach, “Review of micromachined thermopiles for infrared detection,” Meas. Sci. Technol. 18(7), R59–R75 (2007). 28. C. Fumeaux, G. D. Boreman, W. Herrmann, H. Rothuizen, and F. K. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36(25), 6485–6490 (1997). 29. L. J. A. Kaiser, “The Archimedean two-wire spiral antenna,” IRE Trans. Antennas Propag. 8(3), 312–323 (1960). 30. C. A. Balanis, Antenna Theory (John Willey and Sons, 1997). 31. E. D. Palik, Handbook of Optical Constants of Solids 3 (New York, USA, 1997). 32. G. Baffou, C. Girard, and R. Quidant, “Mapping Heat Origin in Plasmonic Structures,” Phys. Rev. Lett. 104(13), 136805 (2010). 33. J. Alda, C. Fumeaux, I. Codreanu, J. A. Schaefer, and G. D. Boreman, “Deconvolution method for twodimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38(19), 3993–4000 (1999). 34. F. J. González, “Thermal-impedance simulations of antenna-coupled microbolometers,” Infrared Phys. Technol. 48(3), 223–226 (2006). 35. W. Ma and X. Zhang, “Study of the thermal, electrical and thermoelectric properties of metallic nanofilms,” Int. J. Heat Mass Transfer 58(1-2), 639–651 (2013). 36. K. Ono and R. O. Suzuki, “Thermoelectric power generation: Converting low-grade heat into electricity,” JOM 50(12), 49–51 (1998). 37. J. P. Carmo, L. M. Gonçalves, and J. H. Correia, Micro and Nanodevices for Thermoelectric Converters, in Scanning Probe Microscopy in Nanoscience and Nanotechnology 2 (Springer, Berlin, 2012).
Collections