Publication:
Quantum entanglement produced in the formation of a black hole

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2010-09-22
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Physical Soc
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A field in the vacuum state, which is in principle separable, can evolve to an entangled state in a dynamical gravitational collapse. We will study, quantify, and discuss the origin of this entanglement, showing that it could even reach the maximal entanglement limit for low frequencies or very small black holes, with consequences in micro-black hole formation and the final stages of evaporating black holes. This entanglement provides quantum information resources between the modes in the asymptotic future (thermal Hawking radiation) and those which fall to the event horizon. We will also show that fermions are more sensitive than bosons to this quantum entanglement generation. This fact could be helpful in finding experimental evidence of the genuine quantum Hawking effect in analog models.
Description
© 2010 The American Physical Society. The authors want to thank Carlos Barceló for useful discussions. This work was supported by the Spanish MICINN Projects FIS2008-05705/FIS, FIS2008-06078- C03-03, the CAM research consortium QUITEMAD S2009/ESP-1594, and the Consolider-Ingenio 2010 Program CPAN (CSD2007-00042). E. M-M. was partially supported by a CSIC JAE-PREDOC2007 grant.
Unesco subjects
Keywords
Citation
[1] P. M. Alsing and G. J. Milburn, Phys. Rev. Lett. 91, 180404 (2003). [2] I. Fuentes-Schuller and R. B. Mann, Phys. Rev. Lett. 95, 120404 (2005). [3] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, Phys. Rev. A 74, 032326 (2006). [4] J. León and E. Martín-Martínez, Phys. Rev. A 80, 012314 (2009). [5] E. Martín-Martínez and J. León, Phys. Rev. A 80, 042318 (2009). [6] E. Martín-Martínez and J. León, Phys. Rev. A 81, 032320 (2010). [7] E. Martín-Martıínez and J. León, Phys. Rev. A 81, 052305 (2010). [8] E. Martín-Martıínez, L. J. Garay, and J. León, Phys. Rev. D 82, 064006 (2010). [9] J. L. Ball, I. Fuentes-Schuller, and F. P. Schuller, Phys. Lett. A 359, 550 (2006). [10] I. Fuentes, R. B. Mann, E. Martín-Martıínez, and S. Moradi, Phys. Rev. D 82, 045030 (2010). [11] S. W. Hawking, Nature (London) 248, 30 (1974). [12] R. Balbinot, A. Fabbri, S. Fagnocchi, A. Recati, and I. Carusotto, Phys. Rev. A 78, 021603 (2008). [13] A. Fabbri and J. Navarro-Salas, Modeling Black Hole Evaporation (World Scientific, Singapore, 2005). [14] R. Schützhold and W. G. Unruh, Phys. Rev. D 81, 124033 (2010). [15] S. Fagnocchi, J. Phys. Conf. Ser. 222, 012036 (2010). [16] W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981). [17] B. Horstmann, B. Reznik, S. Fagnocchi, and J. I. Cirac, Phys. Rev. Lett. 104, 250403 (2010). [18] B. Reznik, A. Retzker, and J. Silman, Phys. Rev. A 71, 042104 (2005). [19] J. Schliemann, J. I. Cirac, M. Kús, M. Lewenstein, and D. Loss, Phys. Rev. A 64, 022303 (2001). [20] G. E. Volovik, The Universe in a Helium Droplet (Oxford University Press, New York, 2003).
Collections