Publication:
Superluminal and slow light in Lambda-type three-level atoms via squeezed vacuum and spontaneously generated coherence

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2005-06-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study the dispersion and absorption spectra of a weak probe in a Delta-type three-level atomic system with closely ground sublevels driven by a strong field and damped by a broadband squeezed vacuum. We analyze the interplay between the spontaneous generated coherence and the squeezed field on the susceptibility of the atomic system. We find that by varying the intensity of the squeezed field the group velocity of a weak pulse can change from subluminal to superluminal. In addition we exploit the fact that the properties of the atomic medium can be dramatically modified by controlling the relative phase between the driving field and the squeezed field, allowing us to manipulate the group velocity at which light propagates. The physical origin of this phenomenon corresponds to a transfer of the atomic coherence from electromagnetically induced transparency to electromagnetically induced absorption. Besides, this phenomenon is achieved under nearly transparency conditions and with negligible distortion of the propagation pulse.
Description
©2005 The American Physical Society. This work was supported by Project Nos. PR3/04-12458 (U.C.M., Spain) and FIS2004-03267 (M.E.C, Spain).
Keywords
Citation
[1] M. O. Scully, Phys. Rep. 219, 191 (1992). [2] O. Kocharovskaya, Phys. Rep. 219, 175 (1992). [3] J. Mompart and R. Corbalán, J. Opt. B: Quantum Semiclassical Opt. 2, R7 (2000). [4] S. E. Harris, J. E. Field, and A. Imamouglu, Phys. Rev. Lett. 64, 1107 (1990). [5] S. E. Harris and L. V. Hau Phys. Rev. Lett. 82, 4611 (1999). [6] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature (London) 397, 594 (1999);D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, Phys. Rev. Lett. 83, 1767 (1999). [7] M. D. Lukin, S. F. Yelin, and M. Fleischhauer, Phys. Rev. Lett. 84, 4232 (2000). [8] M. Fleischhauer and M. D. Lukin, Phys. Rev. A 65, 022314 (2002). [9] O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, Phys. Rev. Lett. 86, 628 (1999). [10] C. P. Sun, Y. Li, and X. F. Liu, Phys. Rev. Lett. 91, 147903 (2003). [11] R. Y. Chiao, Phys. Rev. A 48, R34 (1993);A. M. Steinberg and R. Y. Chiao, ibid. 49, 2071 (1994). [12] L. J. Wang, A. Kuzmich, and A. Dogariu, Nature (London) 407, 277 (2000). [13] A. Lezama, S. Barreiro, and A. M. Akulshin, Phys. Rev. A 59, 4732 (1999). [14] A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, Phys. Rev. A 61, 011802sRd (1999). [15] C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Phys. Rev. A 69, 053818 (2004). [16] A. M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. Lett. 83, 4277 (1999). [17] K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, Phys. Rev. A 68, 013810 (2003). [18] G. S. Agarwal, T. N. Dey, and S. Menon, Phys. Rev. A 64, 053809 (2001). [19] W-H. Xu, J-H. Wu, and J-Y. Gao, Laser Phys. Lett. 1, 176 (2004). [20] D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, Phys. Rev. A 63, 043818 (2001). [21] M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003). [22] G. S. Agarwal and S. Dasgupta, Phys. Rev. A 70, 023802 (2004). [23] M. S. Sahrai, H. Tajalli, K. T. Kapale, and M. S. Zubairy, Phys. Rev. A 70, 023813 (2004). [24] H. Kang, L. Wen, and Y. Zhu, Phys. Rev. A 68, 063806 (2003). [25] F. Xiao, H. Guo, L. Li, C. Liu, and X. Chen, Phys. Lett. A 327, 15 (2004). [26] J. Javananien, Europhys. Lett. 17, 407 (1992). [27] X-M. Hu and J.-S. Peng, J. Phys. B 33, 921 (2000). [28] S. Menon and G. S. Agarwal, Phys. Rev. A 57, 4014 (1998). [29] J-H. Wu and J-Y. Gao, Phys. Rev. A 65, 063807 (2002). [30] A. Joshi, W. Yang, and M. Xiao, Phys. Lett. A 315, 203 (2003). [31] J. Evers, D. Bullock, and C. H. Keitel, Opt. Commun. 209, 173 (2002). [32] C. W. Gardiner, Phys. Rev. Lett. 56, 1917 (1986). [33] Z. Ficek, W. S. Smyth, and S. Swain, Opt. Commun. 110, 555 (1994). [34] M. III Sargent, Phys. Rep., Phys. Lett. 43, 223 (1978). [35] U. Akram, M. R. B. Wahiddin, and Z. Ficek, Phys. Lett. A 238, 117 (1998). [36] Z. Ficek and P. D. Drummond, Phys. Rev. A 43, 6247 (1991); 43, 6258 (1991). [37] Quantum Squeezing, edited by P. D. Drummond and Z. Ficek (Springer-Verlag, Berlin, 2004). [38] G. S. Agarwal, Quantum Optics, Springer Tracts in Modern Physiscs No. 70 (Springer-Verlag, Berlin, 1974). [39] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, London, 1997d; J-S. Peng and L. Gao-Xiang, Introduction to Modern Quantum Optics sWorld Scientific, Singapore, 1998), Chap. 14. [40] M. R. Ferguson, Z. Fizek, and B. J. Dalton, J. Mod. Opt. 42, 679 (1995). [41] M. R. Ferguson, Z. Ficek, and B. J. Dalton, Phys. Rev. A 54, 2379 (1996). [42] C. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305 (1970). [43] P. R. Rice and L. M. Pedrotti, J. Opt. Soc. Am. B 9, 2008 (1992). [44] P. Zhou and S. Swain, Phys. Rev. Lett. 82, 2500 (1999). [45] N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, Phys. Rev. Lett. 75, 3426 (1995). [46] H. Schmidt and A. Imamoglu, Opt. Commun. 131, 333 (1996). [47] Z. Fizek and S. Swain, J. Mod. Opt. 49, 3 (2002). [48] O. Kocharovskaya, A. B. Matsko, and Y. Rostovtsev, Phys. Rev. A 65, 013803 (2001).
Collections