Publication:
Sonic black holes in dilute Bose-Einstein condensates

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2001-02
Authors
Cirac, J. I.
Anglin, J. R.
Zoller, P.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The sonic analog of a gravitational black hole in dilute-gas Bose-Einstein condensates is investigated. It is shown that there exist both dynamically stable and unstable configurations which, in the hydrodynamic limit, exhibit behaviors completely analogous to that of gravitational black holes. The dynamical instabilities involve the creation of quasiparticle pairs in positive and negative energy states. We illustrate these features in two qualitatively different one-dimensional models, namely, a long, thin condensate with an outcoupler laser beam providing an "atom sink" and a tight ring-shaped condensate. We also simulate the creation of a stable sonic black hole by solving the Gross-Pitaevskii equation numerically for a condensate subject to a trapping potential which is adiabatically deformed. A sonic black hole could, in this way, be created experimentally with state-of-the-art or planned technology.
Description
© 2001 The American Physical Society. We thank the Austrian Science Foundation and the European Union TMR networks ERBFMRX–CT96–0002 and ERB–FMRX–CT96–0087. J.R.A. is grateful to Ted Jabobson for useful discussions.
Unesco subjects
Keywords
Citation
[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (19959. K. B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995). [2] See, e.g., F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999). [3] For a review, see, e.g., G. E. Volovik, in Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions, edited by Y. M. Bunkov and H. Godfrin (Kluwer, Dordrecht, 2000), p. 353; V. B. Eltsov, M. Krusius, and G. E. Volovik, e-print cond mat/9809125. [4] W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981). [5] W. G. Unruh, Phys. Rev. D 51, 2827 (1995). [6] M. Visser, e-print gr-qc/9311028; S. Liberati, S. Sonego, and M. Visser, Class. Quantum Grav. 17, 2903 (2000). [7] M. Visser, Phys. Rev. Lett. 80, 3436 (1998); Class. Quantum Grav. 15, 1767 (1998). [8] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973). [9] S. W. Hawking, Nature ~London! 248, 30 (1974); Commun. Math. Phys. 43, 199 (1975). [10] T. Jacobson, Phys. Rev. D 44, 1731 (1991). [11] S. Corley and T. Jacobson, Phys. Rev. D 59, 4011 (1999); S. Corley, ibid. 57, 6280 (1998). [12] For a review, see, e.g., T. Jacobson, Prog. Theor. Phys. Suppl. 136, 1 (1999). [13] V. M. H. Ruutu et al., Nature (London) 382, 334 (1996); T. A. Jacobson and G. E. Volovik, Phys. Rev. D 58, 4021 (19989; G. E. Volovik, Pis’ma Zh. Eksp. Teor. Fiz. 69, 662 81999) [JETP Lett. 69, 705 (199)]. [14] B. Reznik, e-print gr-qc/9703076. [15] U. Leonhardt and P. Piwnicki, Phys. Rev. Lett. 84, 822 82000); Phys. Rev. A 60, 4301 (1999). [16] M. R. Matthews et al., Phys. Rev. Lett. 83, 2498 (1999); L. Denget et al., Nature (London) 398, 218 (1999); S. Burger et al., Phys. Rev. Lett. 83, 5198 (1999). [17] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 85, 4643 (2000). [18] M. R. Andrews et al., Science 275, 637 (1997); I. Bloch, T. W. Hánsch, and T. Esslinger, Phys. Rev. Lett. 82, 3008 (1999); E. W. Hagley et al., Science 283, 1706 (1999). [19] See, e.g., T. Winiecki et al., Europhys. Lett. 48, 475 (1999). [20] See, e.g., U. Al Khawaja et al., Phys. Rev. A 60, 1507 (1999); D. L. Feder et al., ibid. 61, 00116011 (2000). [21] Yu. Kagan, N. Prokof’ev, and B. V. Svistunov, Phys. Rev. A 61, 045601 (2000). [22] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller (unpublished). [23] P. O. Fedichev and G. V. Shlyapnikov, Phys. Rev. A 60, R1779 (1999). [24] R. Dum, J. I. Cirac, M. Lewenstein, and P. Zoller, Phys. Rev. Lett. 80, 2972 (1998); J. Williams and M. Holland, Nature (London) 401, 568 (1999). [25] See Gungwon Kang, preprint, hep-th/9603166 for a concise pedagogical illustration, and references therein, especially S. A. Fulling, Aspects of Quantum Field Theory in Curved Spacetime (Cambridge University Press, Cambridge, 1989); B. Schroer and J. A. Swieca, Phys. Rev. D 2, 2938 (1970).
Collections