Publication:
Quantum evolution according to real clocks

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1999-05
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We characterize good clocks, which are naturally subject to fluctuations, in statistical terms. We also obtain the master equation that governs the evolution of quantum systems according to these clacks and find its general solution. This master equation is diffusive and produces loss of coherence, Moreover, real clocks can he described in terms of effective interactions that are nonlocal in time. Alternatively, they can be modeled by an effective thermal bath coupled to the system. [S1050-2947(99)04905-7].
Description
© 1999 The American Physical Society. We thank C. Barceló, C. Cabrillo, P.F. González-Díaz, G.A. Mena Marugán, and M.A. alle Basagoiti for discussions. J.M.R. is also grateful to J.M. Quintana. We had support from the University of the Basque Country (Project No. UPV 063.310-EB225/95) from Junta de Andalucía, and from DGICYT (Spain) under Project Nos. PB94-0107 and PB93- 0139.
Unesco subjects
Keywords
Citation
[1] W. Pauli, Die Allgemeinen Prinzipien der Wallenmechanik. Handbuch der Physik, edited by S. Flügge (Springer, Berlin, 1958), Vol. V/1, p. 60; General Principles of Quantum Mechanics (Springer-Verlag, Berlin, 1980), p. 63 (English version). [2] J. G. Muga, R. Sala, and J. P. Palao, Superlattices Microstruct. 23, 833 (1998). [3] J. G. Muga, C. R. Leavens, and J. P. Palao, Phys. Rev. A 58, 4336 (1998); J. Oppenheim, B. Reznik, and W. G. Unruh, Time-of-Arrival States, Report No. quant-ph/9807043. [4] E. Wigner, Rev. Mod. Phys. 29, 255 (1957); H. Salecker and E. Wigner, Phys. Rev. 109, 571 (1958). [5] J. B. Hartle, Phys. Rev. D 38, 2985 (1988). [6] W. G. Unruh and R. M. Wald, Phys. Rev. D 40, 2598 (1989). [7] A. Peres, Am. J. Phys. 48, 552 (1980). [8] D. N. Page and W. K. Wootters, Phys. Rev. D 27, 2885 (1983). [9] Y. Aharanov et al., Phys. Rev. A 57, 4130 81998). [10] L. J. Garay, Int. J. Mod. Phys. A 10, 145 (1995). [11] S. W. Hawking, Commun. Math. Phys. 87, 395 (1982); J. Ellis et al., Nucl. Phys. B 241, 381 (1984); L. J. Garay, Phys. Rev. Lett. 80, 2508 (1998); Phys. Rev. D 58, 124 015 (1998); G. Amelino-Camelia et al., Nature (London) 393, 763 (1998). [12] N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981); C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences (Springer-Verlag, Berlin, 1985). [13] K. Huang, Statistical Mechanics (Wiley, New York, 1987). [14] R. P. Feynman and F. Vernon, Ann. Phys. (N.Y.) 24, 118 (1963); R. P. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 19659. [15] H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951). [16] C. W. Gardiner, Quantum Noise (Springer-Verlag, Berlin, 1991); L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995). [17] D. Giulini et al., Decoherence and the Appearance of the Classical World in Quantum Theory (Springer-Verlag, Berlin, 1996). [18] W. H. Zurek, Phys. Rev. D 24, 1516 (1981); 26, 1862 (1982); in The Physical Origins of Time Asymmetry, edited by J. J. Halliwell, J. Pérez-Mercader, and W. H. Zurek (Cambridge University Press, Cambridge, 1994). [19] F. Cooper et al., Phys. Rev. D 55, 6471 (1997).
Collections