Publication:
Effect of interface-induced exchange fields on cuprate-manganite spin switches

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-05-18
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We examine the anomalous inverse spin switch behavior in La_(0.7)Ca_(0.3)MnO_(3)(LCMO)=YBa_(2)Cu_(3)O_(7-δ(YBCO)/LCMO trilayers by combined transport studies and polarized neutron reflectometry. Measuring magnetization profiles and magnetoresistance in an in-plane rotating magnetic field, we prove that, contrary to many accepted theoretical scenarios, the relative orientation between the two LCMO’s magnetizations is not sufficient to determine the magnetoresistance. Rather the field dependence of magnetoresistance is explained by the interplay between the applied magnetic field and the (exponential tail of the) induced exchange field in YBCO, the latter originating from the electronic reconstruction at the LCMO/YBCO interfaces.
Description
© 2012 American Physical Society. Este artículo está firmado por 12 autores. We thank S. Okamoto and J. Salafranca for valuable discussions. Research at Argonne National Laboratory was supported by the U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Grant No. DE-AC02- 06CH11357. Work at UCM was supported by Spanish MICINN Grant No. MAT 2011 27470, Consolider Ingenio CSD2009-00013 (IMAGINE), CAM S2009- MAT 1756 (PHAMA). This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the U. S. Department of Energy’s Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE through Contract No. DE-AC52- 06NA25396
Unesco subjects
Keywords
Citation
[1] A. Ohtomo, H. Hwang, Nature (London), 427, 423 (2004). [2] N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Ruetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, J. Mannhart, Science, 317, 1196 (2007). [3] A. Brinkman, M. Huijben, M. Van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. Van der Wiel, G. Rijnders, D. H. A. Blank, H. Hilgenkamp, Nature Mater., 6, 493 (2007). [4] J. Salafranca, S. Okamoto, Phys. Rev. Lett., 105, 256804 (2010). [5] J. Chakhalian, et al., Nature Phys., 2, 244 (2006). [6] R. Werner, C. Raisch, A. Ruosi, B. A. Davidson, P. Nagel, M. Merz, S. Schuppler, M. Glaser, J. Fujii, T. Chassé, R. Kleiner, D. Koelle, Phys. Rev. B, 82, 224509 (2010). [7] C. Visani, J. Tornos, N. M. Nemes, M. Rocci, C. León, J. Santamaría, S. G. E. te Velthuis, Y. Liu, A. Hoffmann, J.W. Freeland, M. García-Hernández, M. R. Fitzsimmons, B. J. Kirby, M. Varela, S. J. Pennycook, Phys. Rev. B, 84, 060405 (2011). [8] V. Peña, Z. Sefrioui, D. Arias, C. León, J. Santamaría, J. L. Martínez, S. G. E. te Velthuis, and A. Hoffmann, Phys. Rev. Lett., 94, 057002 (2005). [9] L. R. Tagirov, Phys. Rev. Lett., 83, 2058 (1999). [10] A. Buzdin, A. Vedyayev, N. Ryzhanova, Europhys. Lett., 48, 686 (1999). [11] M. van Zalk, M. Veldhorst, A. Brinkman, J. Aarts, H. Hilgenkamp, Phys. Rev. B, 79, 134509 (2009). [12] D. Stamopoulos, E. Manios, M. Pissas, Supercond. Sci. Technol., 20, 1205 (2007). [13] S. Takahashi, H. Imamura, S. Maekawa, Phys. Rev. Lett., 82, 3911 (1999). [14] N. M. Nemes, M. García-Hernández, S. G. E. te Velthuis, A. Hoffmann, C. Visani, J. García-Barriocanal, V. Peña, D. Arias, Z. Sefrioui, C. León, and J. Santamaría, Phys. Rev. B, 78, 094515 (2008). [15] K. Dybko, K. Werner-Malento, P. Aleshkevych, M. Wojcik, M. Sawicki, P. Przyslupski, Phys. Rev. B, 80, 144504 (2009). [16] J. Zhu, I. N. Krivorotov, K. Halterman, O. T. Valls, Phys. Rev. Lett., 105, 207002 (2010). The calculations are based on CuNi/Nb/CuNi trilayers. [17] V. Jaccarino, M. Peter, Phys. Rev. Lett., 9, 290 (1962). [18] H. W. Meul, C. Rossel, M. Decroux, O. Fischer, G. Remenyi, A. Briggs, Phys. Rev. Lett., 53, 497 (1984). [19] G. P. Felcher, R. O. Hilleke, R. K. Crawford, J. Haumann, R. Kleb, G. Ostrowski, Rev. Sci. Instrum., 58, 609 (1987). [20] C. Majkrzak, Physica (Amsterdam), 221B, 342 (1996). [21] M. R. Fitzsimmons, C. Majkrzak, in Modern Techniques for Characterizing Magnetic Materials, edited by Y. Zhu (Springer, New York, 2005), pp. 107–155. [22] Z. Sefrioui, D. Arias, V. Peña, J. E. Villegas, M. Varela, P. Prieto, C. León, J. L. Martínez, and J. Santamaría, Phys. Rev. B, 67, 214511 (2003). [23] A. Hoffmann, S. G. E. te Velthuis, Z. Sefrioui, J. Santamaría, M. R. Fitzsimmons, S. Park, and M. Varela, Phys. Rev. B, 72, 140407 (2005). [24] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.108.207205 for additional experimental details for x-ray and polarized neutron reflectometry, and magnetotransport studies. [25] T. K. Worthington, W. J. Gallagher, T. R. Dinger, Phys. Rev. Lett., 59, 1160 (1987). [26] Q. Li, X. X. Xi, X. D. Wu, A. Inam, S. Vadlamannati, W. L. McLean, T. Venkatesan, R. Ramesh, D. M. Hwang, J. A. Martínez, L. Nazar, Phys. Rev. Lett., 64, 3086 (1990). [27] N. M. Nemes, C. Visani, C. León, M. García-Hernández, F. Simón, T. Feher, S. G. E. Velthuis, A. Hoffmann, J. Santamaría, Appl. Phys. Lett., 97, 032501 (2010). [28] J. Zhu, X. Cheng, C. Boone, I. N. Krivorotov, Phys. Rev. Lett., 103, 027004 (2009).
Collections