Publication:
Spin initialization of a p-doped quantum dot coupled to a bowtie nanoantenna

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-05-15
Authors
Arrieta Yáñez, Francisco
Antón Revilla, Miguel Angel
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The spin initialization of a hybrid system consisting of a p-doped semiconductor quantum dot coupled to a gold bowtie nanoantenna is analyzed. The quantum dot is described as a four-level atom-like system using the density matrix formalism. The two lower levels are Zeeman-split hole spin states and the two upper levels correspond to positively charged excitons with a spin-up, spin-down hole pair and opposite spin electron. The gold bowtie nanoantenna is placed in close proximity to the quantum dot. A linearly polarized laser field drives two of the optical transitions of the quantum dot and produces localized surface charge oscillations in the nanoantenna which act back upon the quantum dot thus changing the effective field felt by it. The angular frequencies of those charge oscillations are very different along its two principal axes, resulting in an anisotropic modification of the spontaneous emission rates of the allowed optical transitions of the quantum dot. These changes are accounted for by using the Green tensor method, and result in a faster spin state initialization than that of the isolated quantum dot. We also show that the presence of the nanoantenna dramatically modifies the optical properties of the fluorescent photons, either in the spectral and in the time domain.
Description
Keywords
Citation
[1] J.M. Elzerman, R.Hanson, L.H. Willems van Beveren, B. Witkamp, L.M.K. Vandersypen, L.P. Kouwenhoven, Nature 430 (2004) 431.[2] D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J.J. Finley, D.V. Bulaev, D. Loss, Phys. Rev. B 76 (2007) 241306. [3] A. Zrenner E. Beham, S. Stufler, F. Findeis, M. Bichler, G. Abstreiter, Nature 418 (2002) 612. [4] X. Li,Y. Wu, D. Steel, D. Gammon, T.H. Stievater, D.S. Katzer, D. Park, C. Piermarocchi, L.J. Sham, Science 301 (2003) 809. [5] A. Imamoglu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, A. Small, Phys. Rev. Lett. 83 (1999) 4204. [6] G. Burkard, D. Loss, D.P. DiVincenzo. Phys. Rev. B 59 (1999) 2070. [7] M. Atatüre J. Dreiser, A. Badolato, A. Högele, K. Karrai, A. Imamoglu, Science 312 (2006) 551. [8] D.V. Bulaev, D. Loss. Phys. Rev. Lett. 95 (2005) 076805. [9] D. Brunner, B.D. Gerardot, P.A. Dalgarno, G. Wüst, K. Karrai, N.G. Stoltz, P.M. Petroff, R.J. Warburton, Science 325 (2009) 70. [10] K.G. Lagoudakis, K.A. Fischer, T. Sarmiento, K. Mueller, Jelena Vuckovic, Phys. Rev. B 90 (2014) 121402. [11] C. Emary, X. Xu, D.G. Steel, S. Saikin, L.J. Sham, Phys. Rev. Lett. 98 (2007) 047401. [12] V. Loo, L. Lanco, O. Krebs, P. Senellart, P. Voisin, Phys. Rev. B 83 (2011) 033301. [13] M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, M.R. Singh, Phys. Rev. B 87 (2013) 195303. [14] K.R. Li, M.I. Stockman, D.J. Bergman, Phys Rev Lett. 91 (2003) 227402. [15] S.A. Maier. Plasmonics: Fundamentals and Applications. 2007 Springer US. [16] W. Zhang, A.O. Govorov, G.W. Bryant, Phys. Rev. Lett. 97 (2006) 146804. [17] R. D. Artuso, G.W. Bryant, Nano Lett. 8 (2008) 2106. [18] K.T. Shimizu, W.K. Woo, B.R. Fisher, H.J. Eisler, M. G. Bawendi, Phys. Rev. Lett. 89 (2002) 117401. [19] A.O. Govorov, G.W. Bryant, W. Zhang, T. Skeini, J. Lee, N.A. Kotov, J.M. Slocik, R.R. Naik, Nano Lett. 6 (2006) 984. [20] J.D. Cox, M.R. Singh, C. von Bilderling and A.V. Bragas, Adv. Opt. Mat. 1 (2013) 460. [21] A. Manjavacas, F.J. García de Abajo, P. Nordlander, Nano Lett. 11 (2011) 2318. [22] A. Manjavacas, P. Nordlander, F.J. García de Abajo, ACS Nano 2 (2012)1724. [23] F.H.L. Koppens, D.E. Chang, F.J. García de Abajo, Nano Lett. 11 (2011) 3370. [24] V.V. Klimov, M. Ducloy, V.S. Letokhov, Eur. Phys. J. D 20 (2002) 133. [25] E. Paspalakis, S. Evangelou, V. Yannopapas and A. F. Terzis, Phys. Rev. A 88 (2013) 053832. [26] E. Paspalakis, S. Evangelou, S. G. Kosionis and A. F. Terzis, J. Appl. Phys. 115 (2014) 083106. [27] S. Evangelou, V. Yannopapas and E. Paspalakis, J. Mod. Optics 61 (2014) 1458. [28] S. Link, M.A. El-Sayed, J. Phys. Chem. B 103 (1999) 8410. [29] C. Racknor, M.R. Singh, Y. Zhang, D.J.S. Birch and Y. Chen, Methods Appl. Fluoresc. 2 (2014) 015002. [30] C.J. Murphy, T.K. Sau, A. Gole, C.J. Orendorff, MRS Bull. 30 (2005) 349. [31] Y. Sun, Y. Xia, Science 298 (2002) 2176. [32] L.J. Sherry, S.H. Chang, G.C. Schatz, R.P.V. Duyne, B.J. Wiley, Y. Xia, Nano Lett. 5 (2005) 2034.[33] C.L. Nehl, H. Liao, J.H. Hafner, Nano Lett. 6 (2006) 683. [34] H. Xu, H.E.J. Bjerneld, M. Kall, M.L. Borjesson, Phys. ReV. Lett. 83 (1999) 4357. [35] J.B. Lassiter, J. Aizpurua, L.I. Hernandez, D.W. Brandl, I. Romero, S. Lal, J.H. Hafner, P. Nordlander, N.J. Halas, J. Nano Lett. 8 (2008) 1212. [36] A.E. Schlather, N. Large, A.S. Urban, P. Nordlander, and N.J. Halas Nano Lett. 13 (2013) 3281. [37] S. Thongrattanasiri, F.J. Garc´ıa de Abajo, Phys. Rev. Lett. 110, (2013) 187401. [38] F. Carreño, M.A. Antón, F. Arrieta-Yáñez Phys. Rev. B 88 (2013) 195303. [39] D. Brunner, Ph.D. Thesis, Herior-Watt University, 2010, http://hdl.handle.net/10399/2350. [40] B.D. Gerardot, D. Brunner, P.A. Dalgarno, P. Ohberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P.M. Petroff, R.J. Warburton, Nature 451 (2008) 441. [41] M. Kroner, K.M. Weiss, B. Biedermann, S. Seidl, A.W. Holleitner, A.Badolato, P.M. Petroff, P. Ohberg, R.J. Warburton, K. Karrai, Phys Rev. B 78 (2008) 075429. [42] E.D. Kim, K. Truex, X. Xu, B. Sun, D.G. Steel, A.S. Bracker, D. Gammon, L.J. Sham, Phys. Rev. Lett. 104 (2010) 167401. [43] D. Press, T.D. Ladd, B. Zhang, Y. Yamamoto, Nature 456 (2008) 218. [44] H.T. Dung, L. Knoll, D.G. Welsch, Phys Rev. A 66 (2002) 063810. [45] G.X. Li, F.L. Li, S.Y. Zhu, Phys. Rev. A 64 (2001) 013819. [46] Y. Yang, J. Xu, H. Chen, S. Zhu, Phys. Rev. Lett. 100 (2008) 043601. [47] G.-X. Li, J. Evers, C. H. Keitel, Phys. Rev. B 80 (2009) 045102. [48] J.-P. Xu and Y.-P. Yang, Phys. Rev. A 81 (2010) 013816.[49] S. Evangelou, V. Yannopapas, E. Paspalakis, Phys. Rev. A 86 (2012) 053811. [50] W.L. Barnes, J. Mod. Opt. 45 (1998) 661. [51] U. Hohenester, A. Tr¨ugler, Comp. Phys. Commun. 183 (2012) 370. [52] P.B. Johnson, R. W. Christy, Phys. Rev. B 6 (1972) 4370. [53] O. Ridolfo, N. Di Stefano, N. Fina, R. Saija, and S. Savasta, Phys. Rev. Lett. 105 (2010) 263601. [54] M.O. Scully M.S. Zubairy, Quantum Optics, 1997 Cambridge University Press. [55] M. Lax, Phys. Rev. 172 (1968) 350. [56] A.N. Vamivakas, Y. Zhao, Chao-Yang Lu, M. Atatüre, Nat. Phys. 5 (2009) 198. [57] A. Urbanczyk, G.J. Hamhuis, R. Nötzel, Appl. Phys. Lett. 96 (2010) 113101. [58] M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, M. Lippitz, Nano Lett. 10 (2010) 4555. [59] M. Pfeiffer, K. Lindfors, P. Atkinson, A. Rastelli, O.G. Schmidt, H. Giessen, M. Lippitz, Phys. Stat. Sol. 249 (2012) 678.
Collections