Universidad Complutense de Madrid
E-Prints Complutense

CALIFA, the Calar Alto Legacy Integral Field Area survey I. Survey presentation

Impacto

Downloads

Downloads per month over past year

Gil de Paz, Armando and Castillo Morales, África and Marino, Raffaella Anna and Mármol Queraltó, Esther (2012) CALIFA, the Calar Alto Legacy Integral Field Area survey I. Survey presentation. Astronomy and astrophysics, 538 . ISSN 0004-6361

[img]
Preview
PDF
4MB

Official URL: http://dx.doi.org/10.1051/0004-6361/201117353


URLURL Type
http://www.aanda.org/Publisher


Abstract

The final product of galaxy evolution through cosmic time is the population of galaxies in the local universe. These galaxies are also those that can be studied in most detail, thus providing a stringent benchmark for our understanding of galaxy evolution. Through the huge success of spectroscopic single-fiber, statistical surveys of the Local Universe in the last decade, it has become clear, however, that an authoritative observational description of galaxies will involve measuring their spatially resolved properties over their full optical extent for a statistically significant sample. We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey, which has been designed to provide a first step in this direction. We summarize the survey goals and design, including sample selection and observational strategy. We also showcase the data taken during the first observing runs (June/July 2010) and outline the reduction pipeline, quality control schemes and general characteristics of the reduced data. This survey is obtaining spatially resolved spectroscopic information of a diameter selected sample of similar to 600 galaxies in the Local Universe (0.005 < z < 0.03). CALIFA has been designed to allow the building of two-dimensional maps of the following quantities: (a) stellar populations: ages and metallicities; (b) ionized gas: distribution, excitation mechanism and chemical abundances; and (c) kinematic properties: both from stellar and ionized gas components. CALIFA uses the PPAK integral field unit (IFU), with a hexagonal field-of-view of similar to 1.3 square', with a 100% covering factor by adopting a three-pointing dithering scheme. The optical wavelength range is covered from 3700 to 7000 angstrom, using two overlapping setups (V500 and V1200), with different resolutions: R similar to 850 and R similar to 1650, respectively. CALIFA is a legacy survey, intended for the community. The reduced data will be released, once the quality has been guaranteed. The analyzed data fulfill the expectations of the original observing proposal, on the basis of a set of quality checks and exploratory analysis: (i) the final datacubes reach a 3 sigma limiting surface brightness depth of similar to 23.0 mag/arcsec(2) for the V500 grating data (similar to 22.8 mag/arcsec(2) for V1200); (ii) about similar to 70% of the covered field-of-view is above this 3 sigma limit; (iii) the data have a blue-to-red relative flux calibration within a few percent in most of the wavelength range; (iv) the absolute flux calibration is accurate within similar to 8% with respect to SDSS; (v) the measured spectral resolution is similar to 85 km s(-1) for V1200 (similar to 150 km s(-1) for V500); (vi) the estimated accuracy of the wavelength calibration is similar to 5 km s(-1) for the V1200 data (similar to 10 km s(-1) for the V500 data); (vii) the aperture matched CALIFA and SDSS spectra are qualitatively and quantitatively similar. Finally, we show that we are able to carry out all measurements indicated above, recovering the properties of the stellar populations, the ionized gas and the kinematics of both components. The associated maps illustrate the spatial variation of these parameters across the field, reemphasizing the redshift dependence of single aperture spectroscopic measurements. We conclude from this first look at the data that CALIFA will be an important resource for archaeological studies of galaxies in the Local Universe.


Item Type:Article
Additional Information:

© ESO 2012. Artículo firmado por 72 autores. We thank the referee Eric Emsellem for his detailed comments which helped to improve the content and presentation of the article. We thank the director of CEFCA, Dr. M. Moles, for his sincere support to this project. We thank the Viabilidad, Diseño, Acceso y Mejora funding program, ICTS-2009-10, and the Plan Nacional de Investigación y Desarrollo funding program, AYA2010-22111-C03-03, of the Spanish Ministerio de Ciencia e Innovación, for the support given to this project. I.M. and J.M. acknowledge financial support from the Spanish grant AYA2010-15169 and Junta de Andalucía TIC114 and Excellence Project P08-TIC-03531. C.K., as a Humboldt Fellow, acknowledges support from the Alexander von Humboldt Foundation, Germany. B. Jungwiert acknowledges support by the grants AV0Z10030501 (Academy of Sciences of the Czech Republic) and LC06014 (Center for Theoretical Astrophysics, Czech Ministry of Education). T. Bartakova acknowledges support by the grants No. 205/08/H005 (Czech Science Foundation) and MUNI/A/0968/2009 (Masaryk University in Brno). Polychronis Papaderos is supported by a Ciencia 2008 contract, funded by FCT/MCTES (Portugal) and POPH/FSE (EC). This paper makes use of the Sloan Digital Sky Survey data. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

Uncontrolled Keywords:Digital sky survey; Potsdam multiaperture spectrophotometer; Star-forming galaxies; Line-of-sight; Sauron project; Lenticular galaxies; Stellar population; Nearby galaxies; Infrared galaxies; Active galaxies
Subjects:Sciences > Physics > Astrophysics
Sciences > Physics > Astronomy
ID Code:30177
Deposited On:21 May 2015 09:24
Last Modified:10 Dec 2018 15:05

Origin of downloads

Repository Staff Only: item control page