Publication:
Polarization versus photon spin

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-01-27
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
The Optical Society of America
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We examine whether the Stokes parameters of a two-mode electromagnetic field results from the superposition of the spins of the photons it contains. To this end we express any n-photon state as the result of the action on the vacuum of n creation operators generating photons which can have may different polarization states in general. We find that the macroscopic polarization holds as sum of the single-photon Stokes parameters only for the SU(2) orbits of photon-number states. The states that lack this property are entangled in every basis of independent field modes, so this is a class of entanglement beyond the reach of SU(2) transformations.
Description
© 2014 Optical Society of America. A. L. acknowledges support from projects FIS2012-35583 of the Spanish Ministerio de Economia y Competitividad and QUITEMAD S2009-ESP-1594 of the Consejeria de Educacion de la Comunidad de Madrid.
Keywords
Citation
1. M. Born and E. Wolf, Principles of Optics, 7th expanded ed. (Cambridge University, 1999). 2. Ch. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998). 3. J. Schwinger, Quantum Theory of Angular Momentum (Academic, 1965). 4. A. Rivas and A. Luis, “Characterization of quantum angular-momentum fluctuations via principal components”, Phys. Rev. A 77, 022105 (2008). 5. F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, “Atomic coherent states in quantum optics”, Phys. Rev. A 6, 2211–2237 (1972). 6. A. Luis and L. L. S´anchez-Soto, “A quantum description of the beam splitter”, Quantum Semiclass. Opt. 7, 153–160 (1995). 7. E. Majorana”, Atomi orientati in campo magnetico variabile”, Nuovo Cimento 9, 43–50 (1932). 8. O. Giraud, P. Braun, and D. Braun, “Classicality of spin states”, Phys. Rev. A 78, 042112 (2008). 9. M. J. Holland and K. Burnett, “Interferometric detection of optical phase shifts at the Heisenberg limit”, Phys. Rev. Lett. 71, 1355–1358 (1993). 10. C. Brif and A. Mann, “Nonclassical interferometry with intelligent light”, Phys. Rev. A 54, 4505–4518 (1996). 11. N. D.Mermin, “Extreme quantum entanglement in a superposition of macroscopically distinct states”, Phys. Rev. Lett. 65, 1838–1840 (1990). 12. Ph. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, “De Broglie wavelength of a non-local four-photon state”, Nature 429, 158–161 (2004). 13. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state”, Nature 429, 161–164 (2004). 14. A. R. Usha Devi, Sudha, and A. K. Rajagopal, “Majorana representation of symmetric multiqubit states”, Quantum Inf. Process 11, 685–710 (2012). 15. T. Bastin, S. Krins, P. Mathonet, M. Godefroid, L. Lamata, and E. Solano, “Operational families of entanglement classes for symmetric N-qubit states”, Phys. Rev. Lett. 103, 070503 (2009). 16. M. Aulbach, D. Markham, and M. Murao, “The maximally entangled symmetric state in terms of the geometric measure”, New J. Phys. 12, 073025 (2010). 17. P. Bruno, “Quantum geometric phase inMajorana’s stellar representation: mapping onto a many-body Aharonov-Bohm phase”, Phys. Rev. Lett. 108, 240402 (2012). 18. O. Giraud, P. Braun, and D. Braun, “Quantifying quantumness and the quest for Queens of Quantum”, New J. Phys. 12, 063005 (2010).
Collections