Publication:
Nonfactorization of four-quark condensates at low energies within chiral perturbation theory

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2010-10-14
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Physical Soc
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Four-quark correlators and the factorization hypothesis are analyzed in the meson sector within chiral perturbation theory. We define the four-quark condensate as lim(x -> 0) < T((q) over barq)(x)((q) over barq)(0)>, which is equivalent to other definitions commonly used in the literature. Factorization of the four-quark condensate holds to leading and next to leading order. However, at next to next to leading order, a term with a nontrivial space-time dependence in the four-quark correlator yields a divergent four-quark condensate, whereas the two-quark condensate and the scalar susceptibility are finite. Such a nonfactorization term vanishes only in the chiral limit. We also comment on how factorization still holds in the large N-c limit, provided such a limit is taken before renormalization.
Description
© 2010 The American Physical Society. This work was partially supported by Spanish Ministerio de Educacion y Ciencia Research Contracts No. FPA2008-00592, No. FIS2006-03438, and No. FIS2008-01323, and by U.Complutense/Banco Santander Grant No. UCM-BSCH GR58/08 910309. We acknowledge the support of the European Community-Research Infrastructure Integrating Activity "Study of Strongly Interacting Matter" (acronym HadronPhysics2, Grant Agreement No. 227431) under the Seventh Framework Programme of the EU.
Unesco subjects
Keywords
Citation
[1] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B147, 385 (1979). [2] S. Narison and R. Tarrach, Phys. Lett. 125B, 217 (1983). [3] R. A. Bertlmann, C. A. Dominguez, M. Loewe, M. Perrottet, and E. de Rafael, Z. Phys. C 39, 231 (1988). [4] H. s. Zong, D. k. He, F. y. Hou, and W. M. Sun, Int. J. Mod. Phys. A 23, 1507 (2008). [5] J. Bijnens, E. Gamiz, and J. Prades, J. High Energy Phys. 10 (2001) 009. [6] V. Cirigliano, J. F. Donoghue, E. Golowich, and K. Maltman, Phys. Lett. B 555, 71 (2003). [7] F. Karsch (RBC-Bielefeld Collaboration), Nucl. Phys. A820, 99C (2009). [8] J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985). [9] S. Weinberg, Physica A (Amsterdam) 96, 327 (1979). [10] J. Bijnens, G. Colangelo, and G. Ecker, J. High Energy Phys. 02 (1999) 020. [11] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984). [12] S. Scherer, Adv. Nucl. Phys. 27, 277 (2003). [13] J. Gasser, C. Haefeli, M. A. Ivanov, and M. Schmid, Phys. Lett. B 652, 21 (2007). [14] J. Gasser, C. Haefeli, M. A. Ivanov, and M. Schmid, Phys. Lett. B 675, 49 (2009). [15] J. Wess and B. Zumino, Phys. Lett. 37B, 95 (1971); E. Witten, Nucl. Phys. B223, 422 (1983). [16] G. Amoros, J. Bijnens, and P. Talavera, Nucl. Phys. B585, 293 (2000); B598, 665(E) (2001). [17] G. Amoros, J. Bijnens, and P. Talavera, Nucl. Phys. B602, 87 (2001). [18] B. Moussallam, J. High Energy Phys. 08 (2000) 005. [19] J. Bijnens, Prog. Part. Nucl. Phys. 58, 521 (2007). [20] A. Gómez Nicola, J. R. Peláez, and J. Ruiz de Elvira (work in progress). [21] A. V. Smilga and J. J. M. Verbaarschot, Phys. Rev. D 54, 1087 (1996). [22] G. Leibbrandt, Rev. Mod. Phys. 47, 849 (1975). [23] S. Descotes-Genon, L. Girlanda, and J. Stern, J. High Energy Phys. 01 (2000) 041. [24] S. Peris and E. de Rafael, Phys. Lett. B 348, 539 (1995). [25] B. L. Ioffe, Prog. Part. Nucl. Phys. 56, 232 (2006). [26] J. Bijnens, G. Colangelo, and G. Ecker, Ann. Phys. (N.Y.) 280, 100 (2000). [27] A. Gómez Nicola and J. R. Peláez, Phys. Rev. D 65, 054009 (2002). [28] J. Bijnens, G. Colangelo, G. Ecker, J. Gasser, and M. E. Sainio, Nucl. Phys. B508, 263 (1997); B517, 639(E) (1998). [29] G. Amorós, J. Bijnens, and P. Talavera, Nucl. Phys. B568, 319 (2000).
Collections