Publication:
Electrical conductivity of a pion gas

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2006-02
Authors
Fernández Fraile, Daniel
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Physical Soc
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The electrical conductivity of a pion gas at low temperatures is studied in the framework of linear response and chiral perturbation theory. The standard ChPT power counting has to be modified to include pion propagator lines with a nonzero thermal width in order to properly account for collision effects typical of kinetic theory. With this modification, we discuss the relevant chiral power counting to be used in the calculation of transport coefficients. The leading order contribution is found and we show that the dominant higher order ladder diagrams can be treated as perturbative corrections at low temperatures. We find that the DC conductivity sigma(T) is a decreasing function of T, behaving for very low T as sigma(T)similar to e(2)m(pi) root m pi/T, consistently with nonrelativistic kinetic theory. When unitarization effects are included, sigma(T) increases slowly as T approaches the chiral phase transition. We compare with related works and discuss some physical consequences, especially in the context of the low-energy hadronic photon spectrum in relativistic heavy ion collisions.
Description
© 2006 The American Physical Society. We are grateful to R. F. lvarez-Estrada, A. Dobado, F. J. LLanes-Estrada, and J. M. Martínez Resco for their useful comments. We also acknowledge financial support from the Spanish research projects No. FPA2004-02602, No. BFM2002-01003, No. R27/05-13955-BSCH, No. FPA2005-02327, and from the Spanish F.P.I. programme (BES-2005-6726).
Unesco subjects
Keywords
Citation
[1] S. Weinberg, Physica A (Amsterdam) 96, 327 (1979). [2] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984). [3] J. Gasser and H. Leutwyler, Phys. Lett. B 184, 83 (1987); P. Gerber and H. Leutwyler, Nucl. Phys. B321, 387 (1989). [4] J. L.Goity and H. Leutwyler, Phys. Lett. B 228, 517 (1989). [5] A. Schenk, Phys. Rev. D 47, 5138 (1993). [6] A. Gómez Nicola, F. J. Llanes-Estrada, and J. R. Peláez, Phys. Lett. B 550, 55 (2002). [7] A. Dobado, A. Gómez Nicola, F. Llanes-Estrada, and J. R. Peláez, Phys. Rev. C 66, 055201 (2002). [8] S. Jeon, Phys. Rev. D 52, 3591 (1995). [9] P. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phys. 11 (2000) 001. [10] M. A. Valle Basagoiti, Phys. Rev. D 66, 045005 (2002). [11] E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon, New York, 1981). [12] S. Gupta, Phys. Lett. B 597, 57 (2004). [13] M. Prakash, M. Prakash, R. Venugopalan, and G. M. Welke, Phys. Rev. Lett. 70, 1228 (1993). [14] D. Davesne, Phys. Rev. C 53, 3069 (1996). [15] A. Dobado and S. N. Santalla, Phys. Rev. D 65, 096011 (2002). [16] A. Dobado and F. J. Llanes-Estrada, Phys. Rev. D 69, 116004 (2004). [17] J. Alam et al., Ann. Phys. (N.Y.) 286, 159 (2000) and references therein. [18] P. Aurenche, F. Gelis, R. Kobes, and H. Zaraket, Phys. Rev. D 58, 085003 (1998). [19] P. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phys. 11 (2001) 057. [20] F. Gelis, H. Niemi, P. V. Ruuskanen, and S. S. Räsänen, J. Phys. G 30, S1031 (2004). [21] J. P. Blaizot and F. Gelis, Eur. Phys. J. C 43, 375 (2005). [22] J. V. Steele, H. Yamagishi, and I. Zahed, Phys. Lett. B 384, 255 (1996). [23] J. V. Steele, H. Yamagishi, and I. Zahed, Phys. Rev. D 56, 5605 (1997). [24] R. Rapp and J. Wambach, Eur. Phys. J. A 6, 415 (1999). [25] S. Turbide, R. Rapp, and C. Gale, Phys. Rev. C 69, 014903 (2004). [26] M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, England, 1996). [27] G. D. Mahan, Many-Particle Physics (Plenum, New York, 2000). [28] T. S. Evans, Nucl. Phys. B374, 340 (1992); R. Baier and A. Niégawa, Phys. Rev. D 49, 4107 (1994). [29] J. Schwinger, J. Math. Phys. (N.Y.) 2, 407 (1961); L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (1965)]; Y. Takahashi and H. Umezawa, Collective Phenomena 2, 55 (1975); A. J. Niemi and G. W. Semenoff, Ann. Phys. (N.Y.) 152, 105 (1984); Nucl. Phys. B230, 181 (1984). [30] R. Kobes, Phys. Rev. D 42, 562 (1990); Phys. Rev. D 43, 1269 (1991). [31] E. Wang and U. Heinz, Phys. Lett. B 471, 208 (1999). [32] G. D. Moore, J. Phys. G 30, S775 (2004). [33] T. N. Truong, Phys. Rev. Lett. 61, 2526 (1988); Phys. Rev. Lett. 67, 2260 (1991); A. Dobado, M. J. Herrero, and T. N. Truong, Phys. Lett. B 235, 134 (1990); A. Dobado and J. R. Peláez, Phys. Rev. D 47, 4883 (1993); Phys. Rev. D 56, 3057 (1997). [34] A. Gómez Nicola and J. R. Peláez, Phys. Rev. D 65, 054009 (2002). [35] S. Eidelman et al., Phys. Lett. B 592, 1 (2004). [36] G. Aarts and J. M. Martinez Resco, J. High Energy Phys. 04 (2002) 053. [37] F. Karsch, E. Laermann, P. Petreczky, S. Stickan, and I. Wetzorke, Phys. Lett. B 530, 147 (2002). [38] M. M. Aggarwal et al. (WA98 Collaboration), Phys. Rev. Lett. 93, 022301 (2004). [39] T. Peitzmann and M. Thoma, Phys. Rep. 364, 175 (2002).
Collections