Publication:
Influence of thermally induced oxygen order on mobile ion dynamics in Gd_(2)(Ti_(0.65)Zr_(0.35))_(2)O_(7)

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2007-05
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We report on the influence of oxygen order in the oxygen-ion dynamics in the ionic conductor Gd_(2)(Ti_(0.65)Zr_(0.35))_(2)O_(7). The metastable Gd_(2)(Ti_(0.65)Zr_(0.35))_(2)O_(7) powders prepared by mechanical milling present an anion-deficient fluorite type of structure, stable up to about 800 °C. Thermal treatments at higher temperatures facilitate the gradual rearrangement of the cation and anion substructures and the relaxation of mechanochemically induced defects. Interestingly, metastable pyrochlores showing a very unusual cation distribution were observed during the thermally induced defect-recovery process. We have found that the ionic conductivity due to mobile oxygen ions increases significantly with increasing sintering temperature from 800 to 1500 °C as a result of a systematic decrease in the activation energy for the dc conductivity from 1.23 to 0.78 eV. Electrical conductivity relaxation is well described by stretched exponentials of the form φ(t)=exp[-(t/τ)^(1−n)], and the fractional exponent n decreases systematically from n=0.51 to 0.18 with increasing sintering temperature. These results are explained in terms of weaker ion-ion interactions in the increasingly ordered structure of the samples sintered at higher temperatures, and point to the importance of structural disorder in determining the dynamics of mobile oxygen ions.
Description
© 2007 The American Physical Society. This work was supported by Mexican Conacyt SEP- 2003-C02-44075 and Spanish MCYT MAT2004-3070.
Unesco subjects
Keywords
Citation
1) A. V. Chadwick, Nature London, 408, 925, 2000. 2) J. B. Goodenough, Nature London, 404, 821, 2000. 3) K. L. Ngai, J. Non-Cryst. Solids, 203, 232, 1996. 4) P. K. Moon, H. L. Tuller, Solid State Ionics, 28-30, 470, 1988. 5) J. Chen, J. Lian, L. M. Wang, R. C. Ewing, R. G. Wang, W. Pan, Phys. Rev. Lett., 88, 105901, 2002. 6) A. J. Burggraaf, T. van Dijk, M. J. Verkerk, Solid State Ionics, 5, 519, 1981. 7) M. Subramanian, G. Aravamudan, G. V. Subba Rao, Prog. Solid State Chem., 15, 55, 1983. 8) B. J. Wuensch, K. W. Eberman, C. Heremans, E. M. Ku, P. Onnerud, E. M. E. Yeo, S. M. Haile, J. K. Stalick, J. D. Jorgensen, Solid State Ionics, 129, 111, 2000. 9) P. K. Moon, H. L. Tuller, in Solid State Ionics, edited by G. Nazri, R. A. Huggins, D. F. Shriver MRS Symposia Proceedings, No. 135: Materials Research Society, Pittsburgh, 1989, p. 149. 10) A. F. Fuentes, K. Boulahya, M. Maczka, J. Hanuza, U. Amador, Solid State Sci., 7, 343, 2005. 11) J. Lian, J. Chen, L. M. Wang, R. C. Ewing, J. M. Farmer, L. A. Boatner, K. B. Helean, Phys. Rev. B, 68, 134107, 2003. 12) F. X. Zhang, B. Manoun, S. K. Saxena, C. S. Zha, Appl. Phys. Lett., 86, 181906, 2005. 13) K. J. Moreno, G. Mendoza-Suárez, A. F. Fuentes, J. García Barriocanal, C. León, J. Santamaría, Phys. Rev. B, 71, 132301, 2005. 14) K. J. Moreno, R. Silva-Rodrigo, A. F. Fuentes, J. Alloys Compd., 390, 230, 2005. 15) J. Rodríguez-Carvajal, Physica B, 19, 55, 1993. ---- See also a report in CPD of IUCr, Newsletter, 2001, 26, 12–19: available at http://www.iucr.org/iucrtop/comm/cpd/Newsletters. The program and manual can be found at http://wwwllb.cea.fr/fullweb/powder.htm. 16) S. García-Martín, M. A. Alario-Franco, H. Ehrenberg, J. Rodríguez-Carvajal, U. Amador, J. Am. Chem. Soc., 126, 3587, 2004. 17) J. I. Langford, Proceedings of the International Conference “Accuracy in Powder Diffraction II” (NIST, Gaithersburg, MD), 1992, NIST Special Publication, No. 846. 18) J. I. Langford, Defect and Microstructure Analysis by Diffraction, IUCr Monographs on Crystallography No. 10, edited by P. Snyder, F. Fiala, H. Bunge (Oxford University Press, Oxford), 1999, pp. 59–81. 19) R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. A32, 751, 1976. 20) N. J. Hess, B. D. Begg, S. D. Conradson, D. E. McCready, P. L. Gassman, W. J. Weber, J. Phys. Chem. B, 106, 4663, 2002. 21) M. Glerup, O. F. Nielsen, F. W. Poulsen, J. Solid State Chem., 160, 25, 2001. 22) A. K. Jonscher, Dielectric Relaxation in Solids, (Chelsea, London), 1983. 23) K. Funke, J. Non-Cryst. Solids, 172-174, 1215, 1994. 24) K. L. Ngai, K. Y. Tsang, Phys. Rev. E, 60, 4511, 1999. 25) K. L. Ngai, C. León, Phys. Rev. B, 60, 9396, 1999. 26) P. B. Macedo, C. T. Moynihan, R. Bose, Phys. Chem. Glasses, 13, 171, 1972. 27) R. Kohlrausch, Ann. Phys., 72, 353, 1847. 28) D. P. Almond, C. R. Bowen, Phys. Rev. Lett., 92, 157601, 2004. 29) K. L. Ngai, C. León, Phys. Rev. B, 66, 064308, 2002. 30) K. L. Ngai, C. León, J. Non-Cryst. Solids, 315, 214, 2003.
Collections