Publication:
Gated-controlled electron pumping in connected quantum rings

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-07-04
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study the electronic transport across connected quantum rings attached to leads and subjected to time-harmonic side-gate voltages. Using the Floquet formalism, we calculate the net pumped current generated and controlled by the side-gate voltage. The control of the current is achieved by varying the phase shift between the two side-gate voltages as well as the Fermi energy. In particular, the maximum current is reached when the side-gate voltages are in quadrature. This new design based on connected quantum rings controlled without magnetic fields can be easily integrated in standard electronic devices.
Description
© Physics Letters A. CAPES via project PPCP-Mercosul (Brazilian Research Agency) [25/2011]; CNPq (Brazilian Research Agency) [472204/2010-6]; FAPEAL (Alagoas State Research Agency) [2011.0908.011.0025.0087]; MINECO [MAT2010-17180, MAT2013-46308].
Unesco subjects
Keywords
Citation
[1] A. Lorke, R. Luyken, M. Fricke, J. Kotthaus, G. Medeiros-Ribeiro, J. García, P. Petroff, Microelectron. Eng. 47 (1999) 95. [2] A. Lorke, R. Johannes Luyken, A. O. Govorov, J. P. Kotthaus, J. M. García, P. M. Petroff, Phys. Rev. Lett. 84 (2000) 2223. [3] Warburton R. J., Schaflein C., Haft D., Bickel F., Lorke A., Karrai K., Garcia J. M., Schoenfeld W., Petroff P. M., Nature 405 (2000) 926. [4] E. Ribeiro, A. O. Govorov, W. Carvalho, G. Medeiros-Ribeiro, Phys. Rev. Lett. 92 (2004) 126402. [5] Bayer M., Stern O., Hawrylak P., Fafard S., Forchel A., Nature 405 (2000) 923. [6] M. Bayer, M. Korkusinski, P. Hawrylak, T. Gutbrod, M. Michel, A. Forchel, Phys. Rev. Lett. 90 (2003) 186801. [7] F. Ding, N. Akopian, B. Li, U. Perinetti, A. Govorov, F. M. Peeters, C. C. Bof Bufon, C. Deneke, Y. H. Chen, A. Rastelli, O. G. Schmidt, V. Zwiller, Phys. Rev. B 82 (2010) 075309. [8] T. Ihn, A. Fuhrer, M. Sigrist, K. Ensslin, W. Wegscheider, M. Bichler, in: B. Kramer (Ed.), Advances in Solid State Physics, volume 43 of Advances in Solid State Physics, Springer Berlin Heidelberg, 2003, pp. 139–154. [9] Y. Aharonov, D. Bohm, Phys. Rev. 115 (1959) 485. [10] R. G. Chambers, Phys. Rev. Lett. 5 (1960) 3. [11] R. A. Römer, M. E. Raikh, Phys. Rev. B 62 (2000) 7045. [12] A. O. Govorov, S. E. Ulloa, K. Karrai, R. J. Warburton, Phys. Rev. B 66 (2002) 081309. [13] K. Moulopoulos, M. Constantinou, Phys. Rev. B 70 (2004) 235327. [14] M. D. Teodoro, V. L. Campo, V. Lopez-Richard, E. Marega, G. E. Marques, Y. G. Gobato, F. Iikawa, M. J. S. P. Brasil, Z. Y. AbuWaar, V. G. Dorogan, Y. I. Mazur, M. Benamara, G. J. Salamo, Phys. Rev. Lett. 104 (2010) 086401. [15] C. González-Santander, F. Domínguez-Adame, R. A. Römer, Phys. Rev. B 84 (2011) 235103. [16] R. Landauer, M. B¨uttiker, Phys. Rev. Lett. 54 (1985) 2049. [17] P. W. Brouwer, Phys. Rev. B 58 (1998) R10135. [18] D. Shin, J. Hong, Phys. Rev. B 70 (2004) 073301. [19] D. Shin, J. Hong, Phys. Rev. B 72 (2005) 113307. [20] J. P. Ramos, L. E. F. Foa-Torres, P. A. Orellana, V. M. Apel, J. Appl. Phys. 115 (2014) 124507. [21] J. Mun´arriz, F. Domínguez-Adame, A. V. Malyshev, Nanotechnology 22 (2011) 365201. [22] J. Munárriz, F. Domínguez-Adame, P. A. Orellana, A. V. Malyshev, Nanotechnology 23 (2012) 205202. [23] C. González-Santander, P. A. Orellana, F. Domínguez-Adame, EPL (Europhysics Letters) 102 (2013) 17012. [24] M. Büttiker, Physica Scripta T54 (1994) 104.
Collections