Publication:
Conductividad eléctrica y difusión de oxígeno en el sistema Bifevox

Research Projects
Organizational Units
Journal Issue
Abstract
Presentamos medidas de la conductividad eléctrica del sistema BIFEVOX Bi_(4)V_(2-x)Fe_(x)O_(11-y)(0≤x≤0.9;0≤y≤1), en el que se realiza la sustitución de iones V (IV) por Fe (III) de forma sistemática. La conductividad muestra un comportamiento potencial con la frecuencia, descrito por σ*(ω)=σ_(dc)[1+(jω/ω_(p))^(n)], y conocido como respuesta dieléctrica universal. Análogamente, el módulo eléctrico presenta picos asimétricos, cuya función de relajación en el dominio del tiempo puede describirse mediante exponenciales “estiradas” de la forma φ(t)=exp(-(t/τ_(σ))^(β)). β da cuenta del grado de correlación del transporte iónico, siendo su valor, β=0.56±0.03, casi independiente de la temperatura y del contenido en Fe. Con el aumento en el contenido de Fe, la conductividad disminuye exponencialmente y la energía de activación del proceso de conducción aumenta de 0.20 a 0.97 eV. Estos resultados se discuten en términos de la ordenación de vacantes oxígeno al dopar con Fe (III).
We present electrical conductivity measurements of BIFEVOX Bi_(4)V_(2-x)Fe_(x)O_(11-y)(0≤x≤0.9; 0≤y≤1), in which V (IV) ions have been systematically substituted by Fe (III) ions. Conductivity shows a power law frequency dependence described by the form σ*(ω)=σ_(dc)[1+(jω/ω_(p))^(n)], known as universal dynamic response. Conversely, the electric modulus shows asymmetric peaks, characterized by stretched exponentials relaxation functions in time domain of the form φ(t)=exp(-(t/τ_(σ))^(β)). β is determined by the degree of correlation in the ionic motion. It´s value, β=0.56±0.03, is almost independent of temperature and iron content. Increasing Fe content leads to an exponential decrease of the conductivity and to an increase of the activation energy of the conduction process from 0.20 to 0.97 eV. These results are discussed in terms of oxygen vacancy ordering upon Fe (III) substitution.
Description
© Sociedad Española de Cerámica y Vidrio. National Congress of Materials (7. 2002. Madrid).
Unesco subjects
Keywords
Citation
1) A. A. Bush, V. G. Koshelayeva, Yu. N. Venevtsev, “Crystals of the Bi_(2)GeO_(5)-Bi_(4)V_(2)O_(11) system”, J. Appl. Phys., 1985, 24, 625. 2) F. Abraham, M. F. Debreuille, G. Mairesse, G. Nowogrocki, “Phase transitions and ionic conductivity in Bi_(4)V_(2)O_(11). An oxide with a layered strucuture”, Solid State Ionics, 1988, 28-30, 529. 3) T. Iharada, A. Hammouche, J. Fouletier, M. Kleitz, J. C. Boivin, G. Mairesse, “Electrochemical characterization of BIMEVOX oxide-ion conductors”, Solid State Ionics, 1991, 48, 257. 4) F. Abraham, J. C. Boivin, G. Mairesse, G. Nowogrocki, “The bimevox series: A new family of high performance oxide ion conductors”, Solid State Ionics, 1990, 40-41, 934. 5) V. Peña, A. Rivera, C. León, J. Santamaría, E. García-González, V. González Calbet, “Correlated oxygen difusión in BIFEVOX”, Chem. Mater., 2002, 14, 1606. 6) E. García-Gonzalez, M. Arribas, J. M. González–Calbet, “Short-range longrange order transfomation in the Bi_(4)V_(2-x)Fe_(x)O_(11-y) series”, Chem. Mater, 2001, 13, 96. 7) A. K. Jonscher, en Dielectric Relaxation in Solids (Chelsea Dielectric, London, 1983). 8) P. B. Macedo, C. T. Moyniham, R. Bose. “The role of ionic diffusion in polarization in vitreous ionic conductors”, Phys Chem Glasses., 1972 13, 171. 9) R. Kohlrausch, “Nachtrag über die elastiche Nachwirkung beim Cocon und Glasladen”, Ann. Phys. (Leipzig), 1847, 72, 393. 10) K. L. Ngai, “Universality of low-frequency fluctuation, dissipation and relaxation properties of condensed matter. I”, Comments Solid State Phys., 1979, 9, 121. 11) C. León, M. L. Lucía, J. Santamaría, M. A. Paris, J. Sanz, A. Várez, “Electrical conductivity relaxation and nuclear magnetic resonance of Li conducting Li_(0.5)La_(0.5)TiO_(3)”, Phys. Rev. B., 1996, 54, 184. 12) C. León, J. Santamaría, M. A. Paris, J. Sanz, J. Ibarra, L. M. Torres, “NonArrhenius conductivity in the fast ionic conductor Li_(0.5)La_(0.5)TiO_(3): Reconciling spin-lattice and electrical-conductivity relaxations”, Phys. Rev. B, 1997, 56, 5302. 13) A. Rivera, J. Santamaría, C. León, “Electrical conductivity relaxation in thinfilmyttria-stabilized zirconia”, Appl. Phys. Lett., 2001, 78, 610. 14) K.L. Ngai, G.N. Greaves, C.T. Moynihan, “Correlation between the activation energies for ionic conductivity for short and long time scales and the Kohlrausch stretching parameter beta for ionically conducting solids ans melts”, Phys.Rev.Lett., 1998, 80, 1018. 15) K. L. Ngai, C. León, “Relating macroscopic electrical relaxation to microscopic movements of the ions in ionically conducting materials by theory and experiment”, Phys. Rev. B, 1999, 60, 9396. 16) W. K. Lee, J. F. Liu, A. S Nowick, “Limiting behavior of ac conductivity in ionically conducting crystals and glasses: A new universality”, Phys. Rev. Lett., 1991, 67, 1559. 17) C. León, A. Rivera, A. Várez, J. Sanz, J. Santamaría, K. L. Ngai, “Origin of constant loss in ionic conductors”, Phys. Rev. Lett., 2001, 86, 1279. 18) A. Rivera, C. León, C. P. E. Varsamis, G. D. Chryssikos, K. L. Ngai, C. M. Roland, J. L. Buckley, “Cation mass dependence of the nearly constant dielectric loss in alkali triborate glasses”, Phys. Rev. Lett., 2002, 88, 125902. 19) C. León, A. Rivera, J. Santamaría, C. T. Moynihan, K. L. Ngai, Comment on “Ionic conduction in glass: new information on the interrelation between the Jonscher behavior and the Nearly Constant-Loss behavior from broadband conductivity spectra”, Phys. Rev. Lett., 2002, 89, 079601 20) C. León, P. Lunkenheimer, K. L. Ngai, “Test of universal scaling of ac conductivity in ionic conductors”, Phys. Rev. B, 2001, 64, 184304. 21) E. García-González, M. Arribas, J. M. González-Calbet, “Oxygen content and microstructure in g-Bi_(4)V_(2)O_(11)”, J. Mat. Chem., 2001, 11, 2320. 22) K. S. Knight, “The crystal structure of russellite; a re-determination using neutron powder diffraction of synthetic Bi_(2)WO_(6)”, Mineral. Mag., 1992, 56, 339.
Collections