Publication:
Geometry-induced fluctuations of olfactory searches in bounded domains

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-04-24
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In olfactory search an immobile target emits chemical molecules at constant rate. The molecules are transported by the medium, which is assumed to be turbulent. Considering a searcher able to detect such chemical signals and whose motion follows the infotaxis strategy, we study the statistics of the first-passage time to the target when the searcher moves on a finite two-dimensional lattice of different geometries. Far from the target, where the concentration of chemicals is low, the direction of the searcher's first movement is determined by the geometry of the domain and the topology of the lattice, inducing strong fluctuations on the average search time with respect to the initial position of the searcher. The domain is partitioned in well-defined regions characterized by the direction of the first movement. If the search starts over the interface between two different regions, large fluctuations in the search time are observed.
Description
© 2014 American Physical Society. This work has been supported by Grant No. 245986 of the EU project Robots Fleets for Highly Agriculture and Forestry Management. J.D.R. was also supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM). The research of D.G.U. has been supported in part by Spanish MINECOFEDER Grants No. MTM2012-31714 and No. FIS2012- 38949-C03- 01. We acknowledge the use of the UPC Applied Math cluster system for research computing (see http://www.ma1.upc.edu/eixam/index.html).
Unesco subjects
Keywords
Citation
[1] G. Kowadlo and R. A. Russell, Int. J. Robot. Res. 27, 869 (2008). [2] G. Oshanin, H. S. Wio, K. Lindenberg, and S. F. Burlatsky, J. Phys.: Cond. Mat. 19, 065142 (2007). [3] J. A. Revelli, F. Rojo, C. E. Budde, and H. S. Wio, J. Phys. A Math. Theor. 43, 195001 (2010). [4] M. A. Lomholt, T. Koren, R. Metzler, and J. Klafter, Proc. Natl. Acad. Sci. USA 105, 11055 (2008). [5] O. Bénichou, M. Coppey, M. Moreau, P. H. Suet, and R. Voituriez, Phys. Rev. Lett. 94, 198101 (2005). [6] E. Gelenbe, Phys. Rev. E 82, 061112 (2010). [7] M. Vergassola, E. Villermaux, and B. I. Shraiman, Nature 445, 406 (2007). [8] C. Barbieri, S. Cocco, and R. Monasson, Europhys. Lett. 94, 20005 (2011). [9] J.-B. Masson, M. Bailly-Bechet, and M. Vergassola, J. Phys. A 42, 434009 (2009). [10] J.-B. Masson, Proc. Natl. Acad. Sci USA 110, 11261 (2013). [11] C. Mejía-Monasterio, G. Oshanin, and G. Schehr, J. Stat. Mech. (2011) P06022. [12] T. G. Mattos, C. Mejía-Monasterio, R. Metzler, and G. Oshanin, Phys. Rev. E 86, 031143 (2012). [13] I. Eliazar, Physica A 356, 207 (2005). [14] I. Eliazar and I. M. Sokolov, Physica A 391, 3043 (2012). [15] I. M. Sokolov and I. Eliazar,J. Phys. A.: Math. Theor. 43, 055001 (2010). [16] I. M. Sokolov and I. Eliazar, Phys. Rev. E 81, 026107 (2010). [17] G. Oshanin and G. Schehr, Quant. Finance 12, 1325 (2012). [18] G. Oshanin, Y. Holovatch, and G. Schehr, Physica A 390, 4340 (2011). [19] C. Mejía-Monasterio, G. Oshanin, and G. Schehr, Phys. Rev. E 84, 035203(R) (2011). [20] D. Boyer, D. S. Dean, C. Mejía-Monasterio, and G. Oshanin, Phys. Rev. E 85, 031136 (2012). [21] D. Boyer, D. S. Dean, C. Mejía-Monasterio, and G. Oshanin, Eur. Phys. J. Special Topics 216, 57 (2013). [22] D. Boyer, D. S. Dean, C. Mejía-Monasterio, and G. Oshanin, J. Stat. Mech. (2013) P04017.
Collections