Universidad Complutense de Madrid
E-Prints Complutense

Fabrication of novel Si-doped hydroxyapatitefgelatine scaffolds by rapid prototyping for drug delivery and bone regeneration

Impacto

Downloads

Downloads per month over past year

Martínez-Vázquez, F.J. and Cabañas Criado, Maria Victoria and Paris, J.L. and Lozano, D. and Vallet Regí, María (2015) Fabrication of novel Si-doped hydroxyapatitefgelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomaterialia . ISSN 1742-7061 (In Press)

[img]
Preview
PDF
19MB

Official URL: http://dx.doi.org/10.1016/j.actbio.2014.12.021



Abstract

Porous 3-D scaffolds consisting of gelatine and Si-doped hydroxyapatite were fabricated at room temperature by rapid prototyping. Microscopic characterization revealed a highly homogeneous structure, showing the pre-designed porosity (macroporosity) and a lesser in-rod porosity (microporosity). The mechanical properties of such scaffolds are close to those of trabecular bone of the same density. The biological behavior of these hybrid scaffolds is greater than that of pure ceramic scaffolds without gelatine, increasing pre-osteoblastic MC3T3-E1 cell differentiation (matrix mineralization and gene expression). Since the fabrication process of these structures was carried out at mild conditions, an antibiotic (vancomycin) was incorporated in the slurry before the extrusion of the structures. The release profile of this antibiotic was measured in phosphate-buffered saline solution by high-performance liquid chromatography and was adjusted to a first-order release kinetics. Vancomycin released from the material was also shown to inhibit bacterial growth in vitro. The implications of these results for bone tissue engineering applications are discussed


Item Type:Article
Uncontrolled Keywords:Impresión tridimensional
Palabras clave (otros idiomas):Tissue engineering
Subjects:Sciences > Chemistry > Chemistry, Organic
ID Code:30908
Deposited On:08 Jul 2015 12:31
Last Modified:15 Jul 2015 11:06

Origin of downloads

Repository Staff Only: item control page