LA SEGURIDAD EN LOS LABORATORIOS DE PRÁCTICAS

M. J. R. Yunta
Dpto. Química Orgánica I
UCM
INDICE

Introducción.. 1

1.- Responsabilidad en la prevención de accidentes... 2

 Protección personal... 2
 Protección ocular... 2
 Vestuario.. 2
 Guantes.. 3

 En el laboratorio.. 3
 Visitas.. 4
 Comportamiento en el laboratorio... 4
 Mantenimiento de los equipos... 4
 Limpieza del vidrio.. 5
 Inhalación de productos químicos peligrosos... 5
 Destilaciones... 5
 Extracciones.. 6
 Neveras.. 7
 Eliminación de residuos.. 7
 Normas generales de eliminación de residuos.. 7
 Manejo de material sin vigilancia continua.. 8

2.- Peligrosidad de los productos químicos.. 8

 Toxicidad... 8
 Límites de exposición.. 10

 Fuentes de información.. 11
 Hojas de seguridad... 11
 Etiquetas... 11
 Descripción de los pictogramas de seguridad... 12
 Interpretación de las etiquetas y hojas de seguridad.. 17

 Propiedades de los compuestos químicos... 20
 Clasificación de los compuestos químicos peligrosos... 20
 Los disolventes y sus peligros.. 21
 Ácidos y bases... 21
 Algunos ejemplos de compuestos tóxicos.. 22
 Peróxidos orgánicos y formadores de peróxidos... 23
3.- Técnicas de trabajo recomendadas ... 25

Trabajo con productos y aparatos... 25

Uso del equipo ... 26
 Vitrinas de laboratorio ... 26
 Precauciones al usar equipo eléctrico ... 26
 Lámparas ultravioleta .. 27
 Control de la temperatura ... 27
 Hielo seco en baños y trampas ... 27
 Trabajo a presión reducida ... 28

4.- Equipos de seguridad y procedimientos de emergencia 28

Información general ... 28

Fuegos ... 29
 Prevención .. 29
 Lucha contra el fuego .. 29
 Daños personales en caso de fuego ... 30

Productos químicos en ojos, piel o vestuario .. 31

Otros accidentes .. 31

Limpieza de vertidos .. 32

Apéndice.- Productos químicos incompatibles .. 33
Introducción

Desde hace tiempo se ha venido realizando un esfuerzo en el Departamento de Química Orgánica I de esta Universidad, para mejorar la seguridad de sus alumnos en la realización de las prácticas de laboratorio. Este manual se ha preparado como base para el conocimiento de los alumnos de las técnicas de seguridad en un laboratorio de prácticas, junto con una serie de presentaciones que resumen su contenido.

Existe siempre un método para trabajar con productos químicos que reduce la probabilidad de que ocurran accidentes, incluyendo la exposición a productos tóxicos, hasta unos niveles mínimos. Para ello se debe

- Practicar los hábitos de prevención
- Usar siempre los equipos de protección personal (gafas, guantes, bata de laboratorio, etc.)
- Usar la menor cantidad posible de compuestos que permita llevar a cabo los objetivos propuestos.
- Siempre que sea posible, sustituir los compuestos peligrosos por otros que lo sean menos y
- Anticipar las posibles consecuencias del trabajo que se está realizando en el laboratorio

Este manual, basado en parte en las recomendaciones de la American Chemical Society, es solamente una base dirigida a los alumnos. No intenta, en ningún momento, sustituir a ninguna de las normativas vigentes.

HACER LAS COSAS CON SEGURIDAD
NO ES LA MEJOR MANERA DE TRABAJAR,
ES LA ÚNICA POSIBLE
1. Responsabilidad en la prevención de accidentes

La prevención de los accidentes es una responsabilidad compartida que requiere la colaboración de todos los que se encuentran en el laboratorio. Tu seguridad es la primera preocupación tanto tuya como de tu profesor. Todos somos responsables en la prevención de accidentes, especialmente tu, cuando estás llevando a cabo algún trabajo en el laboratorio. Los accidentes suelen ocurrir por

- Actitud indiferente
- Falta de sentido común
- No seguir las indicaciones, cometiendo errores

Puedes ser víctima de un error cometido por ti, o de uno cometido por un compañero. Si estás haciendo algo de forma errónea, y un compañero te lo advierte, agradéceselo, puede que esté salvando tu vida. Es decir, si ves que alguien comete un error, indícaselo. La seguridad del laboratorio es también responsabilidad del profesor, por lo que también hay que comunicarle a él los fallos observados.

Para contribuir prácticamente en la prevención de los accidentes debes:

- Seguir cuidadosamente todas las instrucciones de seguridad
- No jugar ni gastar bromas en el laboratorio
- Conocer perfectamente la localización y forma de uso de los equipos de emergencia, como extintores, duchas de seguridad, lavaojos y salidas.
- Antes de llevar cabo ningún trabajo en el laboratorio hay que conocer los posibles peligros de los productos que se van a usar. Asegúrate de conocerlos y de tomar las precauciones necesarias para protegerte a ti mismo y a los demás.
- Conoce los posibles peligros que existen en los procedimientos o en el uso de los aparatos. Aprende lo que se debe y lo que no se debe hacer, y sigue minuciosamente las instrucciones de seguridad

Protección personal

Protección ocular

Toda persona que se encuentre en el laboratorio, incluyendo los visitantes, debe llevar gafas de seguridad que los protejan contra las posibles salpicaduras o proyecciones. El tipo de protección ocular necesaria depende de las circunstancias.

- Las lentes de contacto no protegen los ojos frente a las salpicaduras.

Cuando se trabaja a presión reducida o cuando exista la posibilidad de que la reacción explote, además de las gafas de seguridad, deben usarse mascaras o escudos faciales que protejan cuello y orejas.

Vestuario

El vestuario que se usa en el laboratorio debe proteger frente a salpicaduras y vertidos, debe poderse quitar con facilidad en caso de accidente y debe ser resistente al fuego.

En el laboratorio deben usarse zapatos con la parte superior de piel o similar. Nunca debe usarse calzado que deje piel al descubierto o que tengan la parte
superior de un material que no proteja, como telas o cualquier material entretejido. Tampoco deben usarse tacones altos.

Cualquier prenda del tipo de minifalda o camisas de manga corta, exponen innecesariamente la piel a los posibles compuestos corrosivos, por lo que no son seguras. También deben evitarse las prendas sueltas, como pañuelos o bufandas, o el pelo largo sin recoger, ya que pueden entrar en contacto con llamas o productos peligrosos.

Las joyas también pueden ser peligrosas ya que pueden reaccionar con salpicaduras o vapores, además de facilitar el contacto de sustancias corrosivas con la piel. También pueden aumentar la probabilidad de contacto con una fuente eléctrica produciéndose un shock eléctrico o engancharse en alguna pieza del equipo y ocasionar un accidente.

Guantes

Los guantes son una parte importante del equipo de protección personal. Existen diversos tipos, tanto de diseño, cubriendo sólo hasta la muñeca, el antebrazo o todo el brazo, como de tipo de material usado: latex, neopreno, goma de butilo, u otros. Aunque los guantes de tejido o piel pueden proteger frente a los objetos fríos o calientes, no ofrecen protección frente a los productos químicos. Los de tejido son porosos y los de piel pueden estar contaminados por usos previos.

Los guantes deben usarse de forma adecuada. Antes de ponérselos hay que comprobar la ausencia de roturas. Para evitar contaminaciones por productos químicos, los guantes deben quitarse siempre antes de abandonar la zona de trabajo y antes de usar objetos como teléfonos, cuadernos, libros, elementos de escritura, picaportes de las puertas, teclados de ordenador, etc.

Recuerda que ningún material de los que se usan en la fabricación de los guantes ofrece una protección permanente. En algunos casos el material puede ser permeable a alguno de los productos usados. Esta permeabilidad puede variar, dentro de cada tipo, con el fabricante, por lo que debe consultarse la información proporcionada por el mismo. Si un producto químico atraviesa el guante, entra en contacto con la piel de forma permanente, por lo que el resultado es peor que si no se llevaran guantes.

Si algún producto químico ha traspasado el guante, este no debe volver a usarse, ya que el producto no puede eliminarse en su totalidad. Dicho guante debe considerarse como material peligroso y debe desecharse en el contenedor adecuado. Mientras el guante no sea permeable puede seguirse utilizando.

En el laboratorio

Un laboratorio de química es un lugar para aprender y trabajar con seriedad. Las variaciones en los procedimientos de trabajo indicados por el profesor, incluyendo las variaciones en los reactivos o en las cantidades a usar, pueden ser peligrosas. Antes de hacer ningún cambio es necesario consultar al profesor. Cualquier alteración debe llevarse a cabo con el conocimiento y el consentimiento del profesor.
Visitas

Cualquier visitante del laboratorio, no importa la brevedad del tiempo que se encuentre en él, debe llevar protección ocular. Todos deben estar autorizados y están obligados a seguir las reglas de seguridad.

Comportamiento en el laboratorio

Como estudiante, el deber de aprender incluye el deber de prevenir accidentes siempre que se esté en el laboratorio. Las siguientes ideas intentan ayudar en el cumplimiento de esta obligación:

- Utiliza protección ocular siempre que tú, o alguien cerca de ti, use aparatos o productos químicos.
- Antes de empezar a trabajar entérate de las propiedades y peligrosidad de los productos que vas a utilizar.
- Usa siempre batas de laboratorio que te protejan. No expongas zonas de piel al contacto con productos peligrosos.
- No lleves el pelo largo suelto, ni prendas que puedan “flotar” a tu alrededor.
- Antes de salir del laboratorio lávate bien las manos y antebrazos con agua y jabón, incluso aunque hayas estado usando guantes. Si se han derramado productos químicos sobre la bata de laboratorio, es conveniente lavarla separada de la ropa de vestir.
- Nunca trabajes solo en el laboratorio.
- No guardes, ni siquiera temporalmente, comida o bebida en el laboratorio. Tampoco se puede comer o beber mientras se trabaja en el laboratorio.
- No se puede comer chicle en el laboratorio, ni aplicarse cosméticos sobre la piel. Hay que tener en cuenta que cualquier recipiente o paquete abierto puede contaminarse con los vapores del laboratorio.
- Las batas de laboratorio no deben llevarse nunca en lugares en los que se consumen alimentos o bebidas.
- No debe pipetearse nunca con la boca. Siempre debe utilizarse un chupete o un aspirapipetas.
- Nunca lleves a cabo experimentos que no hayan sido autorizados.
- Cuando te muevas de un sitio a otro dentro del laboratorio debes estar alerta a los posibles movimientos de los demás. Si chotas con alguien mientras transportas material de vidrio o productos químicos procura que estos no caigan encima de alguien.
- No saques nunca productos químicos del laboratorio sin autorización.
- Mantén siempre los productos químicos y los aparatos lejos del borde de la mesa de laboratorio o de cualquier lugar de trabajo.
- Por tu seguridad y la de los demás, comunica al profesor cualquier fallo en el seguimiento de las normas.

Mantenimiento de los equipos

En el laboratorio, como en cualquier sitio, el mantener las cosas limpias y ordenadas proporciona un ambiente más seguro.
Evita peligros innecesarios manteniendo cerrados los cajones y puertas de armarios y taquillas. Nunca guardes materiales, especialmente productos químicos, en el suelo en medio del laboratorio, ni siquiera momentáneamente.

Mantén las zonas de trabajo y almacenaje libres de vidrios rotos, restos de productos químicos o trozos de papel.

Mantén las zonas de paso libres de obstáculos como banquetas, cajas o recipientes para residuos.

Evita el riesgo de patinazos por líquidos derramados en el suelo, restos de hielo, tapones, varillas o cualquier otro objeto pequeño.

Sigue las reglas de seguridad para deshacerte de todos los residuos.

Limpieza del vidrio

El material de vidrio que se usa en el laboratorio se lava en los fregaderos, empleando limpiadores que no contaminen el medio ambiente, como los jabones y detergentes. Si es necesario se puede usar un abrasivo suave.

Deben usarse guantes apropiados y escobillas del tamaño y dureza adecuados al material que se limpia.

No es conveniente acumular muchas piezas sucias en la zona de lavado, ya que el espacio disponible no suele ser grande y el apilar piezas puede conducir a su rotura.

Si se rompe una pieza de vidrio en el fregadero, hay que desaguarlo completamente antes de recoger los fragmentos.

No se deben usar agentes oxidantes fuertes para la limpieza, salvo que el profesor especifique lo contrario. Lo mismo ocurre con los disolventes inflamables. En ambos casos debe usarse el equipo de protección adecuado.

Inhalación de productos químicos peligrosos

Algunas personas creen que si se nota el olor de un producto químico, es que le está causando un daño. Esto no es necesariamente cierto. Lo que si es cierto es que si lo estás oliendo, es que lo estás inhalando.

Sin embargo, algunos productos químicos peligrosos no huelen, algunos paralizan el sentido del olfato, otros huelen pero no pueden ser detectados por la nariz humana en las concentraciones en que son peligrosos, y otros, aunque tienen un olor francamente desagradable, no son dañinos en absoluto. En resumen, que la presencia de olor no indica peligro ni la ausencia del mismo indica inocuidad.

Muchas sustancias, que pueden oler o no, son peligrosas si se inhalan sus vapores o polvo. Esta característica debe estar indicada en la etiqueta del recipiente. Con estos productos no se puede trabajar encima de la mesa, debe hacerse siempre en la vitrina.

Destilaciones

La destilación es un procedimiento habitual de separación y purificación de compuestos tanto en el laboratorio como en la industria.

Su posible peligrosidad radica en la creación de sobrepresiones, el empleo de materiales inflamables, el comienzo de una reacción exotérmica en cadena (reacción de descomposición) y la necesidad de emplear calor para evaporar los compuestos que se van a destilar.
Existen diversos aparatos diseñados para llevar a cabo destilaciones a presión atmosférica, en atmósfera inerte, a presión reducida (destilación a vacío), o por adición de vapor a la mezcla a destilar (destilación en corriente de vapor).

Es necesario poner mucho cuidado en el diseño y construcción de un aparato de destilación, para conseguir una separación eficaz y para evitar pérdidas que pueden ocasionar fuegos o contaminación del área de trabajo.

En el proceso de la destilación se debe conseguir una ebullición suave, evitando las proyecciones que pueden ocasionar daños. Una forma de conseguirlo es agitando la disolución, por ejemplo con un agitador magnético.

También puede usarse piedra pómez para las destilaciones a presión atmosférica, si no se emplea agitación. Siempre deben usarse piedras nuevas y añadirlas al líquido frío, ya que añadir cualquier sólido a un líquido caliente cercano a su punto de ebullición, puede originarse una ebullición súbita con el consiguiente desbordamiento.

La fuente de calor es un factor importante a la hora de prevenir accidentes. Los mejores sistemas son los baños de líquido no inflamable (como el aceite de silicona) o de sólidos (como la arena o el grafito), vapor de agua, placa cerámica o manta eléctrica. Antes de usar esta última, se debe revisar y comprobar la ausencia de costuras sueltas, rasgaduras o agujeros en la zona tejida, así como deformaciones grandes de la misma. Una manta con cualquiera de estos desperfectos no debe usarse.

Muchas placas de calefacción no tienen protección frente a posibles chispazos. Comprueba la etiqueta. Para destilar un compuesto inflamable, la placa debe estar protegida frente a chispazos.

Si la destilación se dispara lo más seguro es alejar la fuente de calefacción de la base del aparato de destilación. Por tanto, para facilitar esta operación en caso de que sea necesario, se debe sujetar el aparato y la fuente de calor por separado.

Para evitar reacciones exotérmicas peligrosas no debe calentarse el matraz por encima de lo indicado en el procedimiento que se sigue.

Nunca se debe destilar, o evaporar, a sequedad un compuesto orgánico, a menos que se esté completamente seguro de la ausencia de peróxidos. La mayor parte de los éteres, incluyendo los cíclicos, forman peróxidos peligrosamente explosivos en contacto con el aire y en presencia de luz. También pueden formar peróxidos muchos alcoholes, hidrocarburos insaturados y otros compuestos.

Extracciones

Las extracciones pueden ser peligrosas ya que se pueden crear sobrepresiones debidas al disolvente volátil inmiscible con el agua. Los embudos de extracción de cristal que se usan en el laboratorio pueden presentar problemas, ya que tanto los tapones como las llaves se pueden salir, derramando el líquido del interior. También es posible que el exceso de presión rompa el embudo.

Usa el embudo de extracción adecuadamente. Si la llave es de teflón no debe engrasarse. Espera a que los líquidos estén a temperatura ambiente antes de proceder a la extracción. Cuando se usa un disolvente volátil, antes de tapar el embudo se debe mover suavemente el contenido, para que una parte del compuesto

1 Ver “peróxidos orgánicos y formadores de peróxidos” en la página 23. Ver “Trabajando a presión reducida” en la página 28 para unas indicaciones sobre la destilación a presión reducida. Ver “Trabajo con vapor” en la página para una introducción sobre la destilación en corriente de vapor.
se evapore y salga el aire del interior. A continuación se tapa, se invierte sujetando el tapón con firmeza, y se abre la llave para liberar la sobrepresión. Repite todas las veces que sea necesario.

El embudo de separación no debe abrirse cerca de llamas o fuentes de ignición, y la liberación de vapores debe hacerse siempre en dirección contraria a las personas. Preferiblemente debe hacerse en dirección a la campana de extracción.

Para evitar que la sobrepresión pueda hacer saltar el tapón es mejor no usar embudos de extracción grandes con disolventes volátiles y extraer pequeñas cantidades de líquido.

Neveras

Las neveras para guardar a baja temperatura compuestos químicos deben estar etiquetadas para dicho uso y estar protegidas contra explosiones. No deben usarse neveras caseras para guardar productos químicos.

Los frascos de compuestos químicos que se guarden en una nevera de laboratorio deben disponerse en una bandeja o contenedor con los bordes lo suficientemente altos como para que puedan contener todo el compuesto en caso de rotura de su recipiente. Los recipientes siempre deben estar sellados y adecuadamente etiquetados. Los recipientes que lleven demasiado tiempo guardados en la nevera, deben descartarse.

Bajo ninguna circunstancia deben guardarse alimentos o bebidas en una nevera que contiene productos químicos.

Eliminación de residuos

El manejo adecuado de los subproductos de reacción, productos sobrantes, productos de desecho y materiales contaminados es un punto importante en la prevención de accidentes. Cada estudiante es responsable de asegurarse de que maneja estos compuestos de forma que se minimicen los riesgos personales y de posible contaminación medioambiental.

Normalmente los subproductos de una reacción y los reactivos en exceso se neutralizan o desactivan dentro del procedimiento de la práctica. En algunos casos deben pasar directamente al contenedor adecuado. En cualquier caso deben seguirse las indicaciones del profesor, que indicará el procedimiento y/o recipiente convenientemente etiquetado que debe usarse.

Normas generales de eliminación de residuos.

- Cuando se eliminan residuos, cada producto químico debe ponerse en el contenedor etiquetado para ese tipo de compuestos.
- Nunca deben echarse por la pila compuestos químicos, salvo aquellos que el profesor haya asegurado que no contravienen ninguna normativa si se encuentran en las aguas de alcantarillado. Por ejemplo, agua y disoluciones acuosas diluidas de cloruro sódico, azúcar o jabón provenientes de un laboratorio pueden arrojarse por el sumidero.
- Los papeles deben recogerse en una papelera, por separado de los residuos químicos. Si se trata de papel contaminado debe introducirse en el contenedor adecuado para el tipo de contaminante.
• El vidrio roto tiene su propio contenedor. Los termómetros rotos pueden contener mercurio y deben recogerse en un contenedor especial.

Manejo de material sin vigilancia continua

Las reacciones que se dejan sin vigilancia suelen ser las principales fuentes de incendios, derrames y explosiones.

No se deben dejar aparatos del tipo de agitadores magnéticos, placas de calefacción o refrigerantes funcionando toda la noche sin tomar medidas de seguridad adecuadas y con el consentimiento del profesor. Este tipo de reacciones debe comprobarse periódicamente.

Siempre debe dejarse información sobre el tipo de reacción y un número de teléfono. De esta forma, en caso de accidente, el personal de servicio puede tomar las medidas adecuadas.

2. Peligrosidad de los productos químicos

Los productos químicos pueden ocasionar daños si no se manejan adecuadamente. Por ejemplo, pueden ser tóxicos, inflamables, corrosivos o reactivos.

Algunos compuestos son peligrosos de una sola manera y otros de varias. Cualquier producto químico, incluso el agua\(^2\), es peligroso al menos de una forma.

El grado de peligrosidad varía, puede ser pequeño, grande o intermedio. Por ejemplo, tanto la gasolina como el alcohol son inflamables, pero la gasolina lo es mucho más que el alcohol. Es mucho más fácil que se prenda la gasolina y arda con fuerza o explote, que sea el alcohol el que lo haga.

En cualquier caso se puede trabajar con seguridad si se siguen las indicaciones de la etiqueta y de la hoja de propiedades del compuesto. (ver página 11). En cualquier caso, el profesor indicará las precauciones que se deben tomar en cada experimento.

Toxicidad

Es bien sabido que cualquier cosa que se ingiera en cantidad suficiente, puede ser letal. En el siglo XVI un cirujano militar y alquimista, conocido como “Paracelso” (cuyo nombre real era Philippus Aureolus Theophrastus Bombast von Hohenheim) escribió: “¿Qué es lo que no es un veneno? Todas las cosas son veneno y no hay nada que no tenga veneno. Es únicamente la dosis lo que hace que algo no sea un veneno”

Cualquier sustancia puede ser dañina para los seres vivos. Existe una relación compleja entre una sustancia y su efecto fisiológico en el hombre. Entre los factores principales están la dosis (cantidad de sustancia a la que uno está expuesto y duración de la exposición), la vía de exposición (por inhalación, ingestión, absorción a través de la piel o los ojos, o inyección) y otra serie de factores diversos

\(^2\) Desde cierto punto de vista y considerando los compuestos químicos de uno en uno, el agua es el más peligroso de todos los conocidos. Considerando todos los accidentes industriales conducidos debidos a reacciones químicas, los que han causado más daños son aquellos en los que el agua era uno de los reactivos.
entre los que se incluyen sexo, fase del ciclo reproductivo, edad, estilo de vida, sensibilización previa, factores alérgicos, disposición genética o, incluso, si la persona tiene un “buen” o “mal día”.

Estos y otros factores pueden afectar a la severidad de la exposición. Si no se saben estos detalles, como suele ser el caso, lo más prudente es actuar como si uno fuera a sufrir consecuencias tóxicas graves y, por tanto, tomar las precauciones necesarias cuando se trabaja con productos químicos en el laboratorio.

Los efectos tóxicos pueden ser inmediatos o retardados, reversibles o irreversibles, locales o generalizados. Los efectos tóxicos pueden variar desde ligeros y reversibles (por ejemplo, dolor de cabeza por la inhalación de acetato de etilo en una única ocasión, que desaparece al respirar aire fresco) hasta serios e irreversibles (por ejemplo, defectos de nacimiento por una exposición excesiva a teratógenos durante el embarazo o cáncer por exposición excesiva a carcinógenos).

Los productos químicos tóxicos pueden entrar en tu organismo por 4 vías:

Inhalación a través del tracto respiratorio (pulmones) al respirar.

Ingestión a través del tracto digestivo. Esto puede ocurrir al comer, al masticar chicle, usando cremas o fumando en el laboratorio, usando un recipiente contaminado o comiendo sin haberse lavado bien las manos al salir del laboratorio.

Absorción a través de aberturas en la piel, como los oídos o los ojos, a través de cortes en la piel, o incluso a través de la piel intacta.

Inyección de una sustancia tóxica a través de un corte hecho en la piel por un objeto agudo contaminado. Entre las posibilidades se incluyen el uso incorrecto de piezas rotas de vidrio contaminadas o el mal uso de objetos afilados como un cuchillo o una aguja hipodérmica.

Algunos detalles importantes sobre los efectos tóxicos:

- **El envenenamiento agudo** se caracteriza por la rápida absorción de la sustancia. A menudo, pero no siempre, el efecto es súbito y puede ser doloroso o severo, o incluso fatal. Normalmente se trata de una única exposición. Ejemplos: envenenamiento por monóxido de carbono o cianuro.
- **El envenenamiento crónico** se caracteriza por exposiciones repetidas a lo largo de un periodo que se mide en meses o años. Los síntomas pueden no ser aparentes inmediatamente. Ejemplos: envenenamiento por plomo o mercurio, exposición a pesticidas.

3 En sentido estricto, una exposición aguda es la exposición a una sustancia tóxica durante 24 horas o menos; una exposición crónica es una exposición que tiene lugar durante 3 meses o más. Las exposiciones repetidas durante un periodo de tiempo inferior a un mes se conocen como exposición sub-aguda, y las que duran entre 1 y 3 meses se denominan exposiciones sub-crónicas.
- La **combinación de sustancias** puede producir efectos sinérgicos. Es decir, si hay presentes dos o más sustancias peligrosas, el efecto resultante puede ser mayor que la suma de los efectos de cada una por separado. Por ejemplo, la exposición a alcohol y disolventes clorados. También es posible lo contrario, es decir, dos sustancias venenosas pueden contrarrestar sus efectos, lo que se conoce como efecto antagonista. Ejemplo: cianuro y nitrato de amilo.

- Los **alérgenos** son agentes que producen una reacción inmunológica, y pueden encontrarse en el laboratorio. Las reacciones alérgicas típicas son dermatitis o problemas de tipo asmático. No todo el mundo reacciona frente a los alérgenos. En cualquier caso, para sufrir una reacción alérgica es necesario estar previamente sensibilizado por, al menos, una exposición previa. Para algunos alérgenos es necesario sufrir varias exposiciones para desarrollar los síntomas de alergia a los mismos. En cualquier caso, si se sospecha que se puede ser alérgico a alguno de los productos del laboratorio, debe comunicarse inmediatamente al profesor.

Exceptuando el caso de la exposición a alérgenos, los efectos tóxicos debidos a la exposición a un compuesto químico, dependen del grado de exposición. Normalmente, cuanto mayor o más frecuente sea la exposición, más grave es el resultado. Por tanto, el daño puede disminuirse, o incluso evitarse, reduciendo las exposiciones al mínimo. En la siguiente sección se explica como.

Límites de exposición

Los productos químicos tóxicos pueden ser dañinos si se ingieren. Por tanto, no comas ni bebas nada en el laboratorio, ni te toques la boca con la mano o los dedos.

Un compuesto tóxico también puede introducirse en el organismo por otras vías. Hasta que no te hayas lavado las manos y hayas salido del laboratorio, no las acerques a tus ojos, nariz ni oídos.

Tampoco te toques ningún corte, rasguño, o cualquier lugar en el que la piel esté dañada. Si es necesario usar agujas o manejar vidrio roto, debe tenerse mucho cuidado para no causarse ninguna herida.

Algunos compuestos químicos tóxicos pueden absorberse directamente a través de la piel. En este caso, la etiqueta del producto debe indicarlo. Para manejarlos, usa guantes que sean impermeables para ese tipo de compuestos, y deséchalos siguiendo las instrucciones del profesor. A continuación, lávate las manos cuidadosamente.

Si se vierte un producto químico sobre la piel o la ropa, de lavarse la zona cuidadosamente con agua abundante. Las manos deben lavarse siempre antes de salir del laboratorio.

Sólo hay otra vía más por la que se puede exponer a un compuesto tóxico: por inhalación. Todos respiramos y, por tanto, en alguna ocasión podemos inhalar los vapores o el polvo que existan en el aire del laboratorio. Solo pasas unas pocas horas en el laboratorio, y, en cualquier caso, el profesor se asegurará de que la concentración de vapores tóxicos y polvo se mantienen por debajo del valor límite (TVL) o del límite de exposición permitida (PEL = concentración del compuesto en el aire en ppm o mg por m3), por lo que es poco probable sufrir daños por esta causa.
Fuentes de información

Hojas de seguridad (MSDS)

Las hojas de seguridad (MSDS) para un producto químico peligroso indican el tipo de peligro que presenta y las precauciones que deben tomarse para evitarlo. Estas hojas deben incluir la siguiente información:
- El nombre del producto peligroso (si es una mezcla, los nombres de los componentes peligrosos presentes en concentración ≥ 1%, ó 0,1% si se trata de un carcinógeno).
- Algunas propiedades físicas y químicas del compuesto (como punto de ebullición, presión de vapor, densidad, etc.)
- Los peligros físicos del compuesto (por ejemplo, si puede arder o explotar)
- Los peligros para la salud (por ejemplo, si es corrosivo, irritante, daña los riñones, y como puede entrar en el organismo [es decir, las vías de entrada, como ingestión o inhalación]).
- Los niveles de PEL y TLV si están establecidos
- Si está considerado o no como carcinógeno.
- Las precauciones que se deben tomar para manejar el producto
- Las medidas de control, método de uso y equipo personal de protección que se debe emplear.
- Procedimientos a usar en caso de emergencia y primeros auxilios
- Fecha de preparación (o revisión) y
- Nombre y dirección del fabricante

Etiquetas

Las etiquetas de los recipientes que contienen productos químicos deben indicar
- El nombre del producto
- Una de las tres palabras (Peligro, Atención, Precaución) que indican el grado relativo de peligrosidad del producto
- Las medidas de precaución necesarias para su manejo
- Medidas en caso de incendio (si es aplicable)
- Medidas especiales (si son necesarias) y
- Nombre, dirección y teléfono del fabricante o distribuidor.

Peligro indica que puede causar daños graves (por ejemplo, ceguera o muerte)
Atención indica que los daños que puede causar no son tan graves y
Precaución indica que hay que tener cuidado al usar, manipular o guardar el producto.

En muchas ocasiones, la sistemática empleada para responder a los reglamentos vigentes para la indicación de la peligrosidad, sea de sustancias o de preparados considerados como tales, se basa en la obligatoria inclusión en la etiqueta del envase de uno, dos o tres pictogramas de peligrosidad, según corresponda, acompañado de los números y textos de las frases R, de riesgos específicos y las S, de consejos de prudencia, relativos a la manipulación de productos peligrosos.
La combinación de varias frases R o S, indica la concurrencia en un mismo producto de diversos riesgos y sus correspondientes consejos de prudencia.

Descripción de los pictogramas de peligrosidad

Explosivos
Sustancias y preparados que puedan explotar bajo el efecto de una llama o que sean más sensibles a los choques o a la fricción que el dinitrobenceno.

Comburentes
Sustancias y preparados que en contacto con otros, particularmente con los inflamables, originan una reacción fuertemente exotérmica.

Extremadamente inflamables
Sustancias y preparados líquidos cuyo punto de inflamación sea inferior a 0°C y su punto de ebullición inferior o igual a 35°C. Sustancias y preparados gaseosos que sean inflamables en contacto con el aire a temperatura y presión normales.

Fácilmente inflamables
Sustancias y preparados sólidos, susceptibles de inflamarse después de un breve contacto con una fuente de ignición y que continúen ardiendo o consumiéndose después de la eliminación de dicha fuente. Sustancias y preparados líquidos cuyo punto de inflamación sea inferior a 21°C, pero que no sean extremadamente inflamables. Sustancias y preparados susceptibles de calentarse y, finalmente, inflamarse en contacto con el aire a la temperatura ambiente, sin aporte de energía.

Muy tóxicos
Sustancias y preparados que por inhalación, ingestión o penetración cutánea puedan entrar riesgos extremadamente graves, agudos o crónicos e incluso la muerte.

Tóxicos
Sustancias y preparados que por inhalación, ingestión o penetración cutánea puedan entrar riesgos graves, agudos o crónicos e incluso la muerte. Su criterio de clasificación se establece en el anexo V, parte I-A del Reglamento mencionado.

Corrosivos
Sustancias y preparados que en contacto con los tejidos vivos puedan ejercer sobre ellos una acción destructiva.

Irritantes
Sustancias y preparados no corrosivos que por contacto inmediato, prolongado o repetido con la piel o mucosas puedan provocar una reacción inflamatoria.

Nocivos
Sustancias y preparados que por inhalación, ingestión o penetración cutánea puedan entrar riesgos de gravedad limitada.

peligrosos para el medio ambiente
Sustancias y preparados cuya utilización presenta o puedan presentar riesgos inmediatos o diferidos para el medio ambiente.
Riesgos específicos y consejos de prudencia
Riesgos específicos de las sustancias peligrosas

Fases R

R 1 Explosivo en estado seco.
R 2 Peligro de explosión por choque, fricción, fuego u otras fuentes de ignición.
R 3 Alto riesgo de explosión por choque, fricción, fuego u otras fuentes de ignición.
R 4 Forma compuestos metales explosivos muy sensibles.
R 5 Peligro de explosión en caso de calentamiento.
R 6 Peligro de explosión, lo mismo en contacto que sin contacto con el aire.
R 7 Puede provocar incendios.
R 8 Peligro de fuego en contacto con materias combustibles.
R 9 Peligro de explosión al mezclar con materias combustibles.
R 10 Intoxicable.
R 11 Fácilmente inflamable.
R 12 Extremadamente inflamable.
R 13 Gas lluido extremadamente inflamable.
R 14 Reacciona violentamente con el agua.
R 15 Reacciona con el agua liberando gases fácilmente inflamables.
R 16 Puede explotar en mezcla con sustancias combustibles.
R 17 Se inflama espontáneamente en contacto con el aire.
R 18 Al usarlos pueden formarse mezclas aire-vapor explosivas/intoxicanes.
R 19 Puede formar peróxidos explosivos.
R 20 Noctivo por inhalación.
R 21 Noctivo en contacto con la piel.
R 22 Noctivo por ingestión.
R 23 Tóxico por inhalación.
R 24 Tóxico en contacto con la piel.
R 25 Tóxico por ingestión.
R 26 Muy tóxico por inhalación.
R 27 Muy tóxico en contacto con la piel.
R 28 Muy tóxico por ingestión.
R 29 En contacto con agua libera gases tóxicos.
R 30 Puede inflamarse fácilmente al usarlo.
R 31 En contacto con ácidos libera gases tóxicos.
R 32 En contacto con ácidos libera gases muy tóxicos.
R 33 Peligro de efectos acumulativos.
R 34 Provoca quemaduras.
R 35 Provoca quemaduras graves.
R 36 Irrita los ojos.
R 37 Irrita las vías respiratorias.
R 38 Irrita la piel.
R 39 Peligro de efectos irreversibles muy graves.
R 40 Posibilidad de efectos irreversibles.
R 41 Peligro de lesiones ocular graves.
R 42 Peligro de sensibilización por inhalación.
R 43 Posibilidad de sensibilización en contacto con la piel.
R 44 Peligro de explosión al calentarlo en ambiente confinado.
R 45 Puede causar cáncer.
R 46 Puede causar alteraciones genéticas hereditarias.
R 48 Peligro de efectos graves para la salud en caso de exposición prolongada.
R 49 Puede causar cáncer por inhalación.
R 50 Muy tóxico para los organismos acuáticos.
R 51 Tóxico para los organismos acuáticos.
R 52 Noctivo para los organismos acuáticos.
R 53 Puede provocar a largo plazo efectos negativos en el medio ambiente acuático.
R 54 Tóxico para la flora.
R 55 Tóxico para la fauna.
R 56 Tóxico para los organismos del suelo.
R 57 Tóxico para las abejas.
R 58 Puede provocar a largo plazo efectos negativos para el medio ambiente.
R 59 Peligroso para la capa de ozono.
R 60 Puede perjudicar la fertilidad.
R 61 Peligro durante el embarazo de efectos adversos para el feto.
R 62 Posible riesgo de perjudicar la fertilidad.
R 63 Posible riesgo durante el embarazo de efectos adversos para el feto.
R 64 Puede perjudicar a los niños alimentados con leche materna.

Combinación de las frases R

R 14/15 Reacciona violentamente con el agua, liberando gases muy inflamables.
R 15/29 Reacciona con el agua, formando gases tóxicos y fácilmente inflamables.
R 20/21 Noctivo por inhalación y en contacto con la piel.
R 20/21/ Noctivo por inhalación, por ingestión y en contacto con la piel.
R 20/22 Noctivo por inhalación y por ingestión.
R 21/22 Noctivo en contacto con la piel y por ingestión.
R 23/24 Tóxico por inhalación y en contacto con la piel.
R 23/24 Tóxico por inhalación, por ingestión y en contacto con la piel.
R 23/25 Tóxico por inhalación y por ingestión.
R 24/25 Tóxico en contacto con la piel y por ingestión.
R 26/27 Muy tóxico por inhalación y en contacto con la piel.
R 26/27 Muy tóxico por inhalación, por ingestión y en contacto con la piel.
R 26/28 Muy tóxico por inhalación y por ingestión.
R 27/28 Muy tóxico en contacto con la piel y por ingestión.
R 38/37 Irrita los ojos y las vías respiratorias.
R 38/37 Irrita los ojos, la piel y las vías respiratorias.
R 38/38 Irrita los ojos y la piel.
R 37/38 Irrita las vías respiratorias y la piel.
R 39/23 Tóxico; peligro de efectos irreversibles graves por inhalación.
R 39/23 Tóxico; peligro de efectos irreversibles graves por inhalación y contacto con la piel.
R 39/23 Tóxico; peligro de efectos irreversibles graves por inhalación, contacto con la piel e ingestión.
R 39/23 Tóxico; peligro de efectos irreversibles graves por inhalación e ingestión.
R 39/24 Tóxico; peligro de efectos irreversibles graves por contacto con la piel.
R 39/24 Tóxico; peligro de efectos irreversibles graves por contacto con la piel.
R 39/25 Tóxico; peligro de efectos irreversibles graves por ingestión.
R 39/26 Muy tóxico; peligro de efectos irreversibles graves por inhalación.
R 39/26 Muy tóxico; peligro de efectos irreversibles graves por inhalación y contacto con la piel.
R 39/26 Muy tóxico; peligro de efectos irreversibles graves por inhalación e ingestión.
R 39/26 Muy tóxico; peligro de efectos irreversibles graves por inhalación.
R 39/27 Muy tóxico; peligro de efectos irreversibles graves por contacto con la piel.
R 39/27 Muy tóxico; peligro de efectos irreversibles graves por contacto con la piel e ingestión.
R 39/28 Muy tóxico; peligro de efectos irreversibles graves por contacto con la piel.
R 39/28 Muy tóxico; peligro de efectos irreversibles graves por ingestión.
R 40/20 Nocivo; posibilidad de efectos irreversibles por inhalación.
R 40/20 Nocivo; posibilidad de efectos irreversibles por inhalación y contacto con la piel.
R 40/20 Nocivo; posibilidad de efectos irreversibles por inhalación, contacto con la piel e ingestión.
R 40/20 Nocivo; posibilidad de efectos irreversibles por inhalación e ingestión.
R 40/21 Nocivo; posibilidad de efectos irreversibles en contacto con la piel.
R 40/21 Nocivo; posibilidad de efectos irreversibles en contacto con la piel e ingestión.
R 40/22 Nocivo; posibilidad de efectos irreversibles por ingestión.
R 43/43 Posibilidad de sensibilización por inhalación y en contacto con la piel.
R 48/20 Nocivo; riesgo de efectos graves para la salud en caso de exposición prolongada por inhalación.
R 48/20 Nocivo; riesgo de efectos graves para la salud en caso de exposición prolongada por inhalación y contacto con la piel.
R 48/20 Nocivo; riesgo de efectos graves para la salud en caso de exposición prolongada por inhalación e ingestión.
R 48/20 Nocivo; riesgo de efectos graves para la salud en caso de exposición prolongada por contacto con la piel.
R 48/21 Nocivo; riesgo de efectos graves para la salud en caso de exposición prolongada por contacto con la piel e ingestión.
R 48/21 Nocivo; riesgo de efectos graves para la salud en caso de exposición prolongada por ingestión.
R 48/22 Nocivo; riesgo de efectos graves para la salud en caso de exposición prolongada por contacto con la piel y por ingestión.
R 48/22 Nocivo; riesgo de efectos graves para la salud en caso de exposición prolongada por contact con la piel e ingestión.
R 48/22 Nocivo; riesgo de efectos graves para la salud en caso de exposición prolongada por contacto con la piel.
R 48/23 Nocivo; riesgo de efectos graves para la salud en caso de exposición prolongada.
R 48/23 Nocivo; riesgo de efectos graves para la salud en caso de exposición prolongada por inhalación.
R 48/23 Nocivo; riesgo de efectos graves para la salud en caso de exposición prolongada por contacto con la piel.
R 48/24 Nocivo; riesgo de efectos graves para la salud en caso de exposición prolongada por contacto con la piel e ingestión.
R 48/24 Nocivo; riesgo de efectos graves para la salud en caso de exposición prolongada por ingestión.
R 48/24 Nocivo; riesgo de efectos graves para la salud en caso de exposición prolongada por contacto con la piel.
R 50/53 Muy tóxico para los organismos acuáticos, puede provocar a largo plazo efectos negativos en el medio ambiente acuático.
R 51/53 Tóxico para los organismos acuáticos, puede provocar a largo plazo efectos negativos en el medio ambiente acuático.
R 52/53 Nocivo para los organismos acuáticos, puede provocar a largo plazo efectos negativos en el medio ambiente acuático.
Consejos de prudencia relativos a las sustancias peligrosas

Frases S

S 1 Consérvese bajo llave.
S 2 Manténgase fuera del alcance de los niños.
S 3 Consérvese en lugar fresco.
S 4 Manténgase lejos de locales habitados.
S 5a Consérvese en agua.
S 5b Consérvese en petróleo.
S 5c Consérvese en anhídrido.
S 5d Consérvese en Agón.
S 5e Consérvese en Carbono dióxido.
S 6b Manténgase el recipiente bien cerrado.
S 6c Manténgase el recipiente en lugar seco.
S 7b Manténgase el recipiente en lugar bien ventilado.
S 8b No corra el recipiente herméticamente.
S 9b Manténgase lejos de alimentos, bebidas y piensos.
S 10 Manténgase alejado de sustancias reductoras.
S 10a Manténgase lejos de reductores, componentes de metales pesados, ácidos y álcalis.
S 10b Manténgase lejos de metales pesados.
S 10c Manténgase lejos de metales pesados.
S 10d Manténgase lejos de metales pesados.
S 10e Manténgase lejos de metales pesados.
S 10f Manténgase lejos de metales pesados.
S 10g Manténgase lejos de metales pesados.
S 10h Manténgase lejos de metales pesados.
S 10i Manténgase lejos de metales pesados.
S 10j Manténgase lejos de metales pesados.
S 10k Manténgase lejos de metales pesados.
S 11 Protegase del calor.
S 12 Protegase de fuentes de ignición. No fumar.
S 13 Maniústese lejos de materiales combustibles.
S 14 Manipúlese y aclárese el recipiente con precaución.
S 15 No corra ni beba durante su utilización.
S 16 No fume durante su utilización.
S 17 No respirar el polvo.
S 18 No respirar el polvo.
S 19 No respirar el polvo.
S 20 No respirar los gases.
S 21 No respirar los humos.
S 22 No respirar los vapores.
S 23 No respirar los aerosoles.
S 24 Evítense el contacto con la piel.
S 25 Evítense el contacto con los ojos.
S 26 Evítense el contacto con los ojos.
S 27 Evítense el contacto con los ojos.
S 28 Evítense el contacto con los ojos.
S 29 Evítense el contacto con los ojos.
S 30 Evítense el contacto con los ojos.
S 31 Evítense el contacto con los ojos.
S 32 Evítense el contacto con los ojos.
S 33 Evítense el contacto con los ojos.
S 34 Evítense el contacto con los ojos.
S 35 Evítense el contacto con los ojos.
S 36 Evítense el contacto con los ojos.
S 37 Evítense el contacto con los ojos.
S 38 Evítense el contacto con los ojos.
S 39 Evítense el contacto con los ojos.
S 40a Evítense el contacto con los ojos.
S 41 Evítense el contacto con los ojos.
S 42 Evítense el contacto con los ojos.
S 43 Evítense el contacto con los ojos.
S 44 Evítense el contacto con los ojos.
S 45 Evítense el contacto con los ojos.
S 46 Evítense el contacto con los ojos.
S 47 Evítense el contacto con los ojos.

S 28a En caso de contacto con la piel, lavese inmediatamente y abundantemente con agua.
S 28b En caso de contacto con la piel, lavese inmediatamente y abundantemente con agua y jabón.
S 28c En caso de contacto con la piel, lavese inmediatamente y abundantemente con agua y jabón, con polietilenglicol 400.
S 28d En caso de contacto con la piel, lavese inmediatamente y abundantemente con polietilenglicol 400 y alcohol (2:1) y después con abundante agua y jabón.
S 28e En caso de contacto con la piel, lavese inmediatamente y abundantemente con polietilenglicol 400.
S 28f En caso de contacto con la piel, lavese inmediatamente y abundantemente con polietilenglicol 400 y agua abundante.
S 29 No tirar los residuos por el desagüe.
S 30 No echar jamás agua al producto.
S 31 Evítense la acumulación de cargas electrostáticas.
S 32 Evítense golpes y rozamientos.
S 33 Evítense golpes y rozamientos.
S 34 Evítense golpes y rozamientos.
S 35 Evítense golpes y rozamientos.
S 36 Evítense golpes y rozamientos.
S 37 Evítense golpes y rozamientos.
S 38 Evítense golpes y rozamientos.
S 39 Evítense golpes y rozamientos.
S 40 Evítense golpes y rozamientos.
S 41 Evítense golpes y rozamientos.
S 42 Evítense golpes y rozamientos.
S 43 Evítense golpes y rozamientos.
S 44 Evítense golpes y rozamientos.
S 45 Evítense golpes y rozamientos.
S 46 Evítense golpes y rozamientos.
S 47 Evítense golpes y rozamientos.
Interpretación de las etiquetas y hojas de seguridad

A continuación se indican las palabras o frases que se suelen usar y su significado.

<table>
<thead>
<tr>
<th>Término empleado</th>
<th>Descripción</th>
<th>Precauciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Puede causar) reacción alérgica en la piel</td>
<td>El contacto repetido o prolongado con la piel puede causar reacción alérgica en personas sensibles</td>
<td>Evitar el contacto prolongado o repetido. Lavarse bien después de su uso o manejo, aunque se tenga la seguridad de que no haya entrado en contacto con la piel.</td>
</tr>
<tr>
<td>(Puede causar) reacción alérgica respiratoria</td>
<td>La inhalación repetida o prolongada puede causar reacción alérgica en personas sensibles</td>
<td>Usar solo en vitrina. No respirar los vapores o el polvo. Mantener cerrado el recipiente.</td>
</tr>
<tr>
<td>(Puede ser) letal por ingestión</td>
<td>Puede ocasionar la muerte si se ingiere suficiente cantidad. En algunos compuestos muy tóxicos puede ser suficiente menos de un gramo.</td>
<td>Manejar con mucho cuidado. Lavarse concienzudamente las manos incluyendo debajo de las uñas. Si se sospecha la ingestión llamar inmediatamente al médico. No inducir el vómito a menos que lo indique el médico.</td>
</tr>
<tr>
<td>(Puede ser) letal por inhalación</td>
<td>Ocasiona la muerte de más del 50% de los animales de ensayo que inhalan el producto.</td>
<td>No respirar aire que contenga vapores o polvo de esta sustancia. Usar únicamente en vitrina.</td>
</tr>
<tr>
<td>Carcinógeno</td>
<td>Se sabe o se sospecha que provoca cáncer</td>
<td>Debe extremarse la precaución al usarlo o manejarlo, y hacerlo sólo en las zonas indicadas para ello. No respirar los vapores ni entrar en contacto por la piel, ojos y vestimenta, utilizando las protecciones adecuadas.</td>
</tr>
<tr>
<td>Combustible</td>
<td>Forma vapores que pueden inflammarse en condiciones normales de trabajo</td>
<td>Mantener el recipiente cerrado. Mantener estos compuestos a varios metros de distancia de cualquier fuente de calor, chispazos o llamas.</td>
</tr>
<tr>
<td>Nota:</td>
<td>De acuerdo a la Nota E del Real Decreto 363/1995 mencionado, en las sustancias cuyas frases R figure la letra "E", indica que determinadas frases incluyen la expresión "también...".</td>
<td></td>
</tr>
<tr>
<td>Corrosivo</td>
<td>Destructuye cualquier material así como el tejido vivo por contacto</td>
<td>Usar gafas de seguridad. No respirar los vapores y evitar el contacto con la piel, ojos y ropa. Usar equipo de protección adecuado.</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dañino por ingestión</td>
<td>Puede ocasionar malestar agudo, nausea, desvanecimientos u otros problemas por ingestión</td>
<td>Manejar con mucho cuidado. Lavarse concienzudamente las manos incluyendo debajo de las uñas. Si se sospecha la ingestión llamar inmediatamente al médico. No inducir el vómito a menos que lo indique el médico.</td>
</tr>
<tr>
<td>Dañino por inhalación</td>
<td>Ocasiona daño en los animales de prueba expuestos a sustancia en el aire que respiran</td>
<td>Evitar respirar aire que contenga esta sustancia</td>
</tr>
<tr>
<td>Evitar contacto con la piel o la ropa</td>
<td>Puede ser dañino en contacto con la piel. Si se deposita en la ropa puede entrar en contacto con la piel.</td>
<td>Usar guantes. Recordar que ningún guante es impermeable durante periodos largos de tiempo. En caso de contacto, lavar con agua abundante. Quitar cualquier prenda contaminada y lavarla por separado antes de volver a usarla. Si no se puede lavar, eliminarla en el contenedor de residuos.</td>
</tr>
<tr>
<td>Evitar contacto con los ojos</td>
<td>Irritante para los ojos y en algunos casos puede provocar ceguera</td>
<td>Usar gafas de seguridad (tipo buzo). Si el producto entra en contacto con los ojos, lavar inmediatamente con agua abundante durante 15 minutos por lo menos, antes de acudir al médico. Si se usaban lentillas, quitarlas inmediatamente.</td>
</tr>
<tr>
<td>Evitar respirarlo (vapor, polvo)</td>
<td>Puede ser dañino si se inhala</td>
<td>Tener cuidado al usarlo o manejarlo para no inhalar los vapores o el polvo. Mantener el recipiente bien cerrado cuando no se use.</td>
</tr>
<tr>
<td>Explosivo</td>
<td>Se sabe que explota en ciertas circunstancias</td>
<td>Manejarlo con cuidado. Evitar golpes (choques o caídas), fricción, chispas y calor.</td>
</tr>
<tr>
<td>Extremadamente inflamable</td>
<td>Forma vapores que pueden inflamarse fácilmente en condiciones normales de trabajo</td>
<td>Mantener el recipiente cerrado. Mantener estos compuestos a varios metros de distancia de cualquier fuente de calor, chispazos o llamas.</td>
</tr>
<tr>
<td>Forma peróxidos</td>
<td>Forma peróxidos o hidroperóxidos con el tiempo o el contacto con el aire.</td>
<td>¡Muchos peróxidos son explosivos! No abrir el recipiente que contiene un compuesto que forma peróxidos sin permiso del profesor. El abrir el recipiente puede hacer que el contenido explote.</td>
</tr>
<tr>
<td>Inflamable</td>
<td>Forma vapores que pueden inflamarse fácilmente en condiciones normales de trabajo</td>
<td>Mantener el recipiente cerrado. Mantener estos compuestos a varios metros de distancia de cualquier fuente de calor, chispazos o llamas.</td>
</tr>
<tr>
<td>Irritante</td>
<td>Irrita la piel, ojos, vías respiratorias, etc.</td>
<td>No respirar los vapores o polvo y evitar el contacto con la piel y los ojos</td>
</tr>
<tr>
<td>Lacrimógeno</td>
<td>Irrita los ojos con sensación de ardor. Una pequeña cantidad es suficiente (simplemente destapar el recipiente hace llorar)</td>
<td>Abrir únicamente en vitrina. No respirar los vapores. Evitar el contacto con la piel y los ojos. No calentar.</td>
</tr>
<tr>
<td>Peligro</td>
<td>Peligro</td>
<td>Peligro</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Manten» alejado de calor, chispas y llamas</td>
<td>Los vapores pueden explotar y/o arder</td>
<td>Mantener cerrado el recipiente. Eliminar todas las fuentes de ignición en un radio de varios metros cuando se use este compuesto.</td>
</tr>
<tr>
<td>Tóxico</td>
<td>Peligroso para la salud cuando se inhala, ingiere, se inyecta o por contacto con la piel. Puede ocasionar daños importantes en exposiciones cortas o prolongadas.</td>
<td>Evitar el contacto con cualquier parte del cuerpo. No respirar vapores o polvo. Cuando se use o maneje emplear equipo de protección adecuado.</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Usar con ventilación adecuada</td>
<td>La inhalación de vapores o polvo del compuesto puede ser perjudicial</td>
<td>Mantener la concentración ambiental de este producto por debajo de los valores PEL o TLV (el que sea menor). Si no hay seguridad de que la ventilación del laboratorio es suficiente para mantener estos niveles, usar únicamente en vitrina</td>
</tr>
<tr>
<td>Veneno</td>
<td>Tiene efectos tóxicos graves y a menudo irreversibles en el organismo. Estas sustancias son peligrosas cuando se inhalan, ingieren o simplemente por contacto con la piel, y una cantidad suficiente puede ocasionar la muerte. Generalmente, pero no siempre, aparece en la etiqueta una calavera y dos tibias cruzadas</td>
<td>Evitar todo contacto. Debe extremarse la precaución al usarlo o manejarlo, y hacerlo sólo en las zonas indicadas para ello. No respirar los vapores ni entrar en contacto por la piel, ojos y vestimenta, utilizando las protecciones adecuadas.</td>
</tr>
</tbody>
</table>

Propiedades de los compuestos químicos

Además de la información sobre seguridad, las hojas MSDS proporcionan otra serie de datos útiles, ya que proporcionan información sobre solubilidad, volatilidad y otras propiedades, así como criterios de clasificación.

Toda esta información puede ser muy útil a la hora de planear el procedimiento a seguir en un experimento.

Clasificación de los compuestos químicos peligrosos

Existen millones de compuestos químicos, y cada uno tiene sus propias características de peligrosidad. Si se intenta prevenir los accidentes cuando se trabaja en un laboratorio químico, es necesario conocer las características de peligrosidad de todas los compuestos con los que se trabaja.

¿Cómo puede un alumno conocer las características de todos los compuestos con los que trabaja?

La respuesta es sencilla: clasificándolos.

Las propiedades características de todos los compuestos químicos pueden clasificarse como pertenecientes a unos pocos tipos.

Los tipos importantes que hay que tener en cuenta a la hora de prevenir accidentes son los siguientes:
<table>
<thead>
<tr>
<th>Tipo</th>
<th>Ejemplos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agentes oxidantes</td>
<td>Nitratos, permanganatos, cromatos</td>
</tr>
<tr>
<td>Agentes reductores</td>
<td>Hidrógeno, nitrógeno, hidrocarburos, ácidos orgánicos</td>
</tr>
<tr>
<td>Corrosivos</td>
<td>Ácidos y bases fuertes, y algunos débiles, halógenos</td>
</tr>
<tr>
<td>Reaccionan con el agua</td>
<td>Metales alcalinos, algunos hidruros, fosfuros, carburos</td>
</tr>
<tr>
<td>Reaccionan con el aire</td>
<td>Metales alcalinos</td>
</tr>
<tr>
<td>Muy tóxicos</td>
<td>Carcinógenos, cianuros, fenol</td>
</tr>
<tr>
<td>Algo tóxicos</td>
<td>Etanol, n-hexano, ácido acético</td>
</tr>
<tr>
<td>Autorrreactivos</td>
<td>Ácido pícrico, TNT, diazocompuestos</td>
</tr>
<tr>
<td>Parejas incompatibles</td>
<td>Ácido con base, agente oxidante con agente reductor.</td>
</tr>
</tbody>
</table>

*En el apéndice se incluyen una serie de parejas de compuestos incompatibles, y ejemplos de parejas de compuestos que, si reaccionan uno con otro, producen compuestos tóxicos.

Los disolventes y sus peligros

El agua es el disolvente más habitual. Como hemos indicado anteriormente, muchos compuestos químicos pueden reaccionar con el agua, algunos de forma violenta.

Los disolventes orgánicos (como etanol, acetona, hexano, cloroformo, etc.) se usan a menudo, aunque presentan el problema de ser inflamables. Es conveniente hacer notar que un líquido inflamable no arde por sí mismo, son los vapores del mismo los que arden. La velocidad a la que un líquido forma vapores inflamables depende de su capacidad de evaporación, que aumenta al aumentar la temperatura. Por tanto, un líquido inflamable es más peligroso a temperatura elevada que a temperatura ambiente. Todos los líquidos y sólidos inflamables deben mantenerse alejados de los oxidantes y del contacto no intencionado con cualquier fuente de ignición.

Algunos disolventes orgánicos pueden atravesar la piel intacta. Cuando se ponen en contacto con la piel todos los disolventes orgánicos ocasionan sequedad y fragilidad de la misma. Los vapores de todos los disolventes orgánicos son tóxicos, algunos más que otros. Los síntomas típicos de una sobreeexposición a vapores de disolventes orgánicos son: vértigo, habla pastosa, inconsciencia y, raramente, muerte. Normalmente se afecta el sistema nervioso central, el hígado y los riñones. Se debe evitar el contacto de la piel con estos líquidos, y la presencia de sus vapores en el aire que se respira, debe mantenerse por debajo de los valores PEL o TLV (el menor de ellos).

Algunos disolventes orgánicos (como éteres y algunos hidrocarburos cíclicos insaturados no aromáticos) pueden formar peróxidos potencialmente explosivos. Estos disolventes son particularmente peligrosos cuando se evaporan casi a sequedad.

Ácidos y bases

Todos los ácidos y bases fuertes, y algunos ácidos débiles y bases ligeramente solubles (como ácido acético glacial, ácido fluorhídrico, hidróxido cálcico) son corrosivos. Cuando se ponen en contacto con los ojos o la piel, destruyen irreversiblemente el tejido vivo. Cuanto más concentrado esté el ácido o la base, o más prolongado sea el contacto, mayor será el daño. Algunos ácidos y bases comienzan a producir daños a los 15 segundos del contacto.
Todos los haluros de hidrógeno son ácidos. Sus disoluciones acuosas son tóxicas y sus vapores irritan fuertemente las mucosas del aparato respiratorio. El flúoruro de hidrógeno es especialmente peligroso.

El ácido sulfúrico concentrado es un agente deshidratante fuerte. Todas las disoluciones, excepto las muy diluidas, son oxidantes. El ácido sulfúrico fumante es un agente oxidante fuerte. Cuando se preparan disoluciones acuosas siempre debe añadirse lentamente el ácido al agua, mientras se agita la mezcla. La reacción es tan fuertemente exotérmica, que si se hace deprisa puede llegar a ebullición y provocar salpicaduras.

El ácido nítrico también es un oxidante fuerte. Normalmente reacciona más rápidamente que el sulfúrico. Si cae ácido nítrico diluido sobre la piel y no se lava completamente, la piel afectada toma un color amarillo pardo, debido a la desnaturalización de las proteínas que tiene lugar.

El ácido fosfórico es un ácido débil. El ácido concentrado es un líquido viscoso y, al igual que el sulfúrico, es fuertemente deshidratante. Cuando se preparan disoluciones acuosas siempre debe añadirse lentamente el ácido al agua con agitación. Al contrario que la mayoría de los ácidos, que tienen un sabor ácido o agrio, las disoluciones diluidas del ácido fosfórico tienen sabor dulce. De hecho, el ácido fosfórico diluido se usa como edulcorante en muchas bebidas refrescantes. En ningún caso se debe probar una disolución de ácido fosfórico que se use en el laboratorio.

El ácido perclórico es un oxidante muy fuerte, especialmente a temperaturas elevadas. Puede reaccionar de forma explosiva con compuestos orgánicos y otro agentes reductores. El ácido perclórico debe utilizarse únicamente en una vitrina especialmente acondicionada para su uso. Nunca debe usarse el ácido perclórico sobre superficies de madera u otro elemento combustible. Las botellas de ácido perclórico deben mantenerse en un recipiente secundario con los bordes lo suficientemente altos como para asegurar que puede contener todo el producto en caso de rotura del envase original. No se deben mezclar los ácidos sulfúrico o fosfórico con el ácido perclórico. Puede ocurrir una deshidratación excesiva, formándose ácido perclórico anhidro, que es explosivo a temperatura ambiente, o formarse ésteres perclorato, que tienen el mismo poder explosivo de la nitroglicerina. Los percloratos de metales de transición también pueden explotar.

El ácido pícrico seco es altamente explosivo, pero no lo es si está húmedo.

Las bases más habituales usadas en un laboratorio de prácticas son los hidróxidos de metales alcalinos y las disoluciones acuosas de amoníaco. Los hidróxidos de sodio y de potasio son bases fuertes y muy corrosivas de la piel y ojos. Debe tenerse un cuidado especial al manejar disoluciones concentradas de estas bases. El calor de disolución es muy elevado, pudiendo llegar a hacer ebullir la disolución ocasionando salpicaduras. El amoníaco en disolución acuosa es una base débil, a menudo denominada “hidróxido amónico”. Los vapores de sus disoluciones son tóxicos e irritantes.

Algunos ejemplos de compuestos tóxicos

Halógenos. Todos los halógenos son agentes oxidantes tóxicos – especialmente el flúor. El flúor es demasiado reativo para usarlo en un laboratorio de prácticas. El cloro también es un oxidante fuerte, que solo puede usarse con un entrenamiento especial. El bromo es un líquido volátil corrosivo que produce quemaduras graves en contacto con la piel. Es lacrimógeno. Debe manejarse siempre en vitrina.
Mercurio. El mercurio derramado se evapora llenando el recinto de vapores tóxicos. El vapor de mercurio es un veneno acumulativo. Cuando se derrama el mercurio forma pequeñas gotas que pueden quedar adheridas a cualquier superficie, incluso vertical, y ser de tamaño tan pequeño que no se vean a simple vista. El mercurio derramado debe recogerse inmediatamente limpiando la zona a conciencia. Debe hacerse con un aspirador especial (no puede tener filtros de papel ya que el vapor de mercurio los atraviesa) y cualquier pequeño desperfecto de la superficie del lugar en que se ha derramado, debe tratarse con polvo de zinc, que lo amalgama y ya no es volátil.

Bases fuertes. Estas sustancias son todas corrosivas y producen quemaduras químicas graves y destructivas, o incluso ceguera. Las bases fuertes son insidiosas; a menudo, una quemadura ocasionada incluso por una disolución concentrada de una base fuerte, no provoca dolor hasta que la quemadura no es bastante grave. Aunque realmente sean “diluidas”, las disoluciones saturadas de bases fuertes como el Ca(OH)$_2$ también son corrosivas.

Formaldehído El formaldehído es un gas incoloro, soluble en agua, picante e irritante. Normalmente se maneja en forma de “formol”, una disolución acuosa cuya concentración varía entre el 37 y el 56% y que a menudo contiene también hasta un 15% de metanol.

El formaldehído también se vende en forma de polímero llamado “paraformaldehído”. El paraformaldehído se descompone en el monómero por calefacción. La inhalación de vapores de formaldehído a partir del paraformaldehído o el formol puede producir una irritación grave del tracto superior del sistema respiratorio, ocasionando edema.

Los vapores de formaldehído están considerados como posibles cancerígenos y fuertes irritantes de los ojos, cuyos efectos no se mitigan apreciablemente por el lavado. Puede producirse sensibilización en la piel por exposiciones repetidas a las disoluciones diluidas. Dado que se puede desarrollar alergia al formaldehído, se debe evitar el contacto con la piel usando guantes de neopreno, goma de butilo o cloruro de polivinilo, aunque solo son impermeables durante un determinado periodo de tiempo. En cualquier caso, el formaldehído debe manejarse en vitrina.

Cianuros y nitrilos. Los cianuros y los nitrilos son sustancias tóxicas que actúan rápidamente. La sobreexposición puede ser letal. Los síntomas de su toxicidad aparecen si se ingieren, inhalan o se absorben a través de la piel. Unas pocas inhalaciones de cianuro de hidrógeno pueden ocasionar deterioro mental, y unas pocas más, la muerte. Algunos cianuros metálicos se hidrolizan en disolución acuosa y forman cianuro de hidrógeno; y todos lo forman en presencia de un ácido. Antes de trabajar con cianuros hay que asegurarse de tener a mano perlas de nitrito de amilo como antídoto de primeros auxilios, mientras llega el médico.

Peróxidos orgánicos y formadores de peróxidos.

Los peróxidos orgánicos son una clase especial de compuestos que poseen unos problemas de estabilidad poco frecuentes. Estos peróxidos se encuentran entre los productos más peligrosos que se manejan en un laboratorio. Como clase, los peróxidos orgánicos son explosivos poco potentes. So peligrosos porque son
extremadamente sensibles al choque, chispas, calor, o cualquier otra forma de inicio accidental de una explosión.

Muchos peróxidos que se manejan de forma rutinaria en un laboratorio químico son más sensibles al choque que explosivos primarios del tipo del TNT. Los peróxidos tienen una vida media, o velocidad de descomposición, específica para tipo de condiciones. Una velocidad de descomposición lenta puede autoacelerarse y llegar a una explosión violenta, especialmente cuando hay grandes cantidades de peróxidos.

Son sensibles al calor, fricción, impacto, luz y agentes oxidantes o reductores fuertes. Nunca debe abrirse un recipiente si se sospecha que puede estar contaminado con peróxidos, ya que el contenido puede explotar.

Todos los peróxidos orgánicos son extremadamente inflamables, y los fuegos en los que estén involucradas grandes cantidades de peróxidos, deben tratarse con precaución extrema.

Un peróxido que se encuentre presente como contaminante en el disolvente empleado en una reacción, puede cambiar el curso de la misma.

Los siguientes tipos de compuestos forman peróxidos:

- Aldehidos
- Éteres, especialmente los ciclicos y los derivados de alcoholes primarios y secundarios. Es especialmente importante al etiquetar los recipientes de éter etílico o isopropílico, incluir la fecha de recepción, para que puedan destruirse los restos antes de que transcurran 3 meses. Nunca debe destilarse un éter si no se está seguro de que se encuentra libre de peróxidos, y nunca debe hacerse hasta sequedad.
- Compuestos que contienen átomos de hidrógeno bencílicos. Estos compuestos son especialmente susceptibles para la formación de peróxidos cuando estos hidrógenos se encuentran en un carbono terciario [por ejemplo, en el cumeno (isopropilbenceno)].
- Compuestos que contienen una estructura alílica [CH₂=CH-CH₂⁻], incluyendo la mayoría de los alquenos.
- Cetonas, especialmente las ciclicas
- Compuestos de vinilo y vinilideno [como el acetato de vinilo y el cloruro de vinilideno].

Ejemplos de compuestos que forman concentraciones de peróxidos peligrosas cuando se exponen al aire:
- Ciclohexeno
- Cicloocteno
- Decalina (decahidronaftaleno9
- p-Dioxano
- Éter etílico
- Éter isopropílico
- Tetrahidrofurano (THF)
- Tetralina (tetrahidronaftaleno)

El profesor debe saber siempre cuando alguien va a trabajar con estos compuestos.
3.- Técnicas de trabajo recomendadas

Trabajo con productos y aparatos

Seguir las siguientes recomendaciones facilita el trabajo y lo hace más seguro:

- Planifica tu trabajo antes de comenzar la sesión de laboratorio. Asegúrate de saber qué hacer en caso de accidente tuyo o de otro.
- Mantén tu zona de trabajo ordenada.
- Monta los aparatos limpios y secos, firmemente sujetos y lejos del borde de la mesa. Presta atención a la proximidad de botellas con reactivos a fuentes de calor o a otras personas y sus equipos. Elige el tamaño de material adecuado a la cantidad a usar, dejando un mínimo de un 20% de espacio libre.
- Examina el material de vidrio antes de usarlo, para que no tenga rajas ni estrellas. El vidrio dañado debe cambiarse por otro en buen estado.
- Todo el equipo debe estar en perfectas condiciones. En caso de duda, consulta al profesor.
- Un recipiente adecuado, colocado debajo del matraz de reacción puede evitar el derramamiento de productos en caso de rotura.
- Usa mamparas de protección adecuadamente colocadas cuando trabajes con productos peligrosos, además de tu protección personal.
- Cuando trabajes con gases o líquidos inflamables:
 - No permitas la presencia de fuentes de ignición en sus proximidades, salvo que el profesor te indique lo contrario.
 - Usa condensadores o trampas apropiadas, para minimizar en lo posible la difusión de los productos en la atmósfera.
 - Cuando vayas a usar una placa o una manta de calefacción, antes de comenzar a trabajar debes saber la temperatura de autoignición de los productos que pueden desprenderse y asegurarte que todas las superficies que puedan encontrar se encuentran por debajo de dicha temperatura.
 - Asegúrate de que cualquier material eléctrico que vayas a usar no produce chispas.
- Siempre que sea posible usa sistemas eléctricos de calefacción que no produzcan chispas, o un baño de vapor.
- Coloca los embudos de separación de forma que los cierres no puedan aflojarse por gravedad y usa anillos de retención.
- Usa pinzas y nueces adecuadamente sujetas para fijar las piezas de los equipos. Sujeta también con abrazaderas las gomas de refrigeración, o asegúrate de que el flujo de agua es lo suficientemente pequeño para que no puedan saltar.
- Monta los aparatos de forma que las fuentes de calor puedan retirarse con facilidad.
- Nunca se deben dejar aparatos, equipo, cajas (llenas o vacías), recipientes con productos químicos o cualquier otro objeto por el suelo del laboratorio.
- Nunca calentar un recipiente cerrado. Asegúrate de que la fuente de calor tiene ventilación.
• Siempre que se calienten algo más de unos pocos mL de un líquido en un matraz sin agitación, debe añadirse un poco de piedra pómex o plato poroso.
• Usa una trampa de gases apropiada siempre que en una reacción puedan producirse gases peligrosos.
• El uso de las vitrinas de laboratorio está recomendado siempre que se puedan producir vapores tóxicos o inflamables. La mayor parte de los vapores inflamables son más densos que el aire y pueden difundirse por la mesa de laboratorio o el suelo hasta fuentes de ignición aparentemente lejanas. Si no se controlan con la aspiración pueden llegar a lugares alejados y ocasionar allí un incendio que se expande, instantáneamente, por todo el camino recorrido.

Uso del equipo

Vitrinas de laboratorio

Las vitrinas de laboratorio controlan la exposición a vapores tóxicos, desagradables o inflamables. Protegen frente a implosiones, pero no frente a explosiones, salvo que sean de poca importancia. Si existe riesgo de explosión importante, deben usarse otras barreras de protección.

Antes de usar la vitrina hay que asegurarse de su correcto funcionamiento. En caso de duda consultar al profesor, ya que no se puede uno fiar de que se mueva un trozo de papel sujeto a la base de la ventana, como indicación de funcionamiento correcto, ya que eso sólo indicaría que el ventilador del motor mueve algo de aire, pero no si consigue el flujo adecuado.

Nunca debe taparse, ni siquiera parcialmente, los conductos de ventilación de la campana. Para su correcto funcionamiento, la ventana delantera debe permanecer cerrada, por lo que es conveniente que los aparatos estén montados de forma que dejen libre una zona de unos 10 cm en las cercanías de la ventana. En cualquier caso, los aparatos que se monten en el interior de una vitrina deben estar provistos de los correspondientes condensadores, trampas, etc. que minimicen las emisiones de productos tóxicos o peligrosos.

Una vitrina de laboratorio no es un armario de seguridad. Los compuestos almacenados en la vitrina pueden impedir su correcto funcionamiento y, en caso de accidente o fuego, aumentar la peligrosidad del mismo.

Precauciones al usar equipo eléctrico

Bajo ciertas circunstancias, las corrientes eléctricas de poco voltaje y amperaje, pueden conducir a un shock grave. Cuanto mayor sea el tiempo de contacto con la corriente mayor será el daño, especialmente en el caso de quemaduras.

Se deben seguir las siguientes recomendaciones:

 Sólo el personal cualificado puede repara y mantener los equipos eléctricos y electrónicos
 No se deben usar cables eléctricos para sujetar piezas. Nunca se debe tirar de cables conectados.
 Debe darse aviso inmediatamente de cualquier fallo eléctrico o de cualquier indicio de sobrecalentamiento de los aparatos en uso.
Los equipos eléctricos se deben inspeccionar periódicamente para comprobar que no hay ningún fallo en el aislante de los cables, ni están doblados o dañados los enchufes. Todos los aparatos deben estar provistos de toma de tierra.

Lámparas ultravioleta

Existen dos tipos de peligro en relación con el uso de lámparas ultravioleta, el relativo a la propia radiación y el asociado con el manejo de las mismas.

Toda radiación de longitud de onda menor de 250 nm debe considerarse peligrosa. La lámpara UV debe manejarse en el interior de una caja que impida que la radiación salga fuera. Así mismo, deben protegerse los ojos y la piel, para evitar quemaduras.

Control de la temperatura

Muchas reacciones necesitan ser calentadas al principio. Como en la mayoría de los casos la velocidad de la reacción aumenta al aumentar la temperatura, las reacciones muy exotérmicas pueden volverse peligrosamente violentas a menos que se tomen precauciones para enfriarlas adecuadamente.

Algunas reacciones exotérmicas tienen un periodo de inducción. En estas reacciones, si se añade demasiado reactivo al principio, la reacción puede hacerse demasiado rápida para la condensación efectiva de los vapores, una vez finalizado el periodo de inducción; en estos casos conviene tener preparado un baño frío para poder enfriar rápidamente el matraz de reacción en caso necesario.

También hay que recordar que los líquidos viscosos transmiten mal el calor, por lo que requieren precauciones especiales.

Muchas reacciones requieren cierto control de la temperatura. El aparato debe montarse de tal forma que se pueda controlar la calefacción y el enfriamiento, es decir, que se puedan aplicar y retirar con rapidez.

Hielo seco en baños y trampas

Cuando se usa hielo seco deben seguirse las siguientes precauciones, ya que puede dañar los dedos y las manos por congelación. El hielo seco no se debe manejar sin usar guantes apropiados, ya que la más leve traza de humedad sobre la piel pude congelarse. Por otra parte, el hielo seco sublima produciendo dióxido de carbono, por lo que debe usarse con una ventilación adecuada. En caso de tener que romper bloques de hielo seco, deben usarse gafas de seguridad.

En muchos casos el hielo seco se usa para baños, añadiéndolo a un disolvente. Este disolvente debe reunir las siguientes características:

1. No emitir vapores tóxicos
2. Tener una viscosidad baja
3. No ser inflamable
4. Ser poco volátil y
5. Tener un punto de congelación adecuado.

La elección final del líquido depende de la temperatura que se desee conseguir. No existe ningún líquido que cumpla todos los requisitos. A continuación se indican unos cuantos ejemplos de líquidos que no deberían usarse, indicando entre paréntesis el número de la característica que no cumplen:
- Éter etílico (3 y 4)
- Acetona (3 y 4)
- Butanona (3 y 4)
- 60% Etilénglicol + 40% agua (2)
- 60% Propilénglicol + 40% agua (2)
- Alcohol isopropílico (3)
- Etanol (1 y 3)

Una vez elegido el líquido, el hielo seco se añade en pequeñas porciones. No debe añadirse más mientras exista una densa “niebla” por encima del baño.

Trabajo a presión reducida

Los desecadores a vacío deben protegerse de implosiones y usarse únicamente para guardar productos que se están secando o que deban protegerse de la humedad. Antes de abrir un desecador que se encuentra a presión reducida, hay que restaurar la presión atmosférica. Si se usa una bomba de vacío, se debe colocar una trampa entre la bomba de vacío y el aparato, para que los vapores de los productos no pasen nunca al aceite de la bomba ni a la atmósfera del laboratorio. Si es posible, el aire que sale de la bomba debe hacerlo a una vitrina o al exterior directamente.

A veces se emplean trompas de agua para hacer el vacío, especialmente en filtraciones. En estos casos debe usarse siempre una trampa para evitar que el agua inunde la filtración si, por cualquier causa, la aspiración disminuye, así como una válvula o llave. Debe usarse siempre material de vidrio adecuado para resistir la presión reducida.

Cuando se destila a presión reducida es muy común que ocurra un sobrecalentamiento con el consiguiente salto del líquido. Es importante, por tanto, que la calefacción sea lo más uniforme posible, lo que se consigue con el uso de mantas eléctricas. Asimismo debe utilizarse agitación u otro sistema que asegure la correcta evaporación del líquido a destilar. Al terminar la destilación, el sistema debe enfriarse antes de introducir aire en el interior del mismo, para evitar explosiones.

4.- Equipos de seguridad y procedimientos de emergencia

Información general

Una definición de lo que coloquialmente entendemos por accidente, sería una consecuencia negativa a causa de haberse producido uno o más fallos en cualquiera de los pasos de un determinado proceso. Consecuentemente, para evitar accidentes debe actuaros responsablemente considerando los riesgos que entraña cada paso del proceso en cuestión.

Los accidentes personales que habitualmente se producen en los laboratorios son, por una parte, los comunes a todo tipo de trabajo como golpes, torceduras, heridas, quemaduras, etc., y los "químicos", derivados de los propios procesos que se llevan a cabo.
Los laboratorios de química están equipados con, al menos, una ducha de seguridad y un lavaojos. Toda persona que trabaje en el laboratorio debe saber donde se encuentran localizados y cómo se deben usar. También existen extintores de incendios. Nunca intentes usar uno si no sabes cómo hacerlo adecuadamente. También hay rutas establecidas para la evacuación en caso de emergencia, que deben conocerse y seguirse.

Antes de ayudar a otra persona, evalúa el daño que puedes sufrir tú. Si sufres heridas al intentar ayudar a otro, no puedes serle de ninguna ayuda a nadie.

En cualquier caso, cuando ocurre una emergencia, lo más adecuado es:
- Avisar al profesor de la naturaleza y lugar de la emergencia, indicando si hay heridos, fuego, etc.
- Avisar a las demás personas de la zona sobre la naturaleza de la emergencia.
- No mover a ningún herido, salvo que exista peligro por incendio o exposición a productos químicos. Mantenerlo caliente. Los movimientos innecesarios pueden agravar fracturas o daños en el cuello.

Fuegos

Prevención

La mejor forma de luchar contra un fuego es prevenirlo. Se puede evitar el fuego y disminuir su peligrosidad si se trabaja de forma adecuada y sabiendo lo que se está haciendo en cada momento. Entre esto se incluye:

- Mantener libre de obstáculos el paso y las salidas
- Almacenar cantidades limitadas de productos inflamables
- Eliminar los residuos de forma adecuada y
- Separar los líquidos inflamables de los materiales combustibles, como papeles y cartones.

Lucha contra el fuego

En caso de fuego, no grites, no corras, mantén la calma y actúa con decisión.
- Si el fuego está dentro de un recipiente pequeño, se puede sofocar tapándolo para evitar la llegada de oxígeno. Por ejemplo, en el caso de un fuego en un vaso de precipitados, tapándolo con un vidrio de reloj. Nunca se debe tapar con tarpos o papeles, salvo que estén mojados. Se deben retirar de las inmediaciones todos los productos inflamables, para evitar que el fuego se extienda.
- Dar la alarma. Notificar a los compañeros y el profesor.
- Si el incendio es de grandes proporciones no intentes apagarlo tu solo. Si el fuego está demasiado extendido como para poder apagarlo rápidamente, todo el mundo debe abandonar la zona, excepto el personal entrenado que maneje los extintores de incendios.
- En caso de incendio es vital que sepas en cada momento lo que debes hacer. Infórmate sobre el plan de emergencia.
- Evacúa el edificio siguiendo las señales, ve cerrando las puertas detrás de tí.
- En caso de evacuación nunca se debe bajar en los ascensores. Siempre por las escaleras de incendios.
- Es fácil subestimar un fuego. Nunca intentes usar un extintor si no sabes como hacerlo y que es del tipo adecuado. En caso de usar un extintor, uno debe situarse siempre entre el fuego y la ruta de escape (por ejemplo, una puerta) y atacarlo desde esa posición. Dirige el chorro del extintor hacia el extremo más próximo a tí de la base de las llamas.
- Un fuego pequeño suele poder dominarse en sus comienzos, pero no siempre. Si no se extingue puede amenazar la vida de todos los presentes.

<table>
<thead>
<tr>
<th>Clases de Fuego</th>
<th>Agente Extintor</th>
<th>No usar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materiales sólidos, madera, papel, trapos, etc.</td>
<td>AGUA (mejor pulverizada) POLVO POLIVALENTE TIPO A</td>
<td>polvo normal</td>
</tr>
<tr>
<td>Líquidos y sólidos licuables, disolventes, aceites, ceras, etc.</td>
<td>POLVO NORMAL POLVO POLIVALENTE TIPO B</td>
<td>Agua, polvo especial</td>
</tr>
<tr>
<td>Gases y vapores Butano, acetileno, etc.</td>
<td>POLVO POLIVALENTE TIPO B</td>
<td>Agua, anhídrido carbónico, espuma, polvo especial</td>
</tr>
<tr>
<td>Metales ligeros, magnesio, litio, sodio, titanio, aluminio</td>
<td>POLVO ESPECIAL O ARENA SECA TIPO D</td>
<td>Agua, anhídrido carbónico, espuma, polvo normal y polivalente</td>
</tr>
<tr>
<td>Equipos y aparatos eléctricos</td>
<td>ANHIDRIDO CARBONICO TIPO C</td>
<td>Agua, arena, espuma, polvos diversos</td>
</tr>
</tbody>
</table>

Daños personales en caso de fuego

Cuando esté ardiendo la ropa de una persona, hay que llevarla a la ducha de seguridad. Cuando la ropa está en llamas, mucha gente tiene tendencia a salir corriendo, lo que aviva las llamas y aumenta las quemaduras.

Si la ducha no está disponible en ese momento, se debe tumbar a la persona en el suelo y hacerle rodar sobre sí mismo a fin de apagar las llamas. Cualquier pequeña zona que siga ardiendo debe apagarse golpeando con la palma de la mano.

Deben apagarse primero las llamas cerca de la cabeza y hombros, y luego ir avanzando hacia los pies. Una vez que el fuego está pagado, se debe cubrir con algo a la víctima, pero dejando la cabeza destapada. Las mantas antiincendios no deben usarse hasta que el incendio esté apagado⁴. Si la ropa está contaminada con

⁴ Si todavía hay llamas y se coloca la manta, estas pueden dirigirse hacia la cabeza. Además pueden agravar las quemaduras si se pega a la piel el material de la ropa.
productos químicos debe quitarse inmediatamente, usando guantes y con ayuda de tijeras si es necesario, para evitar la contaminación de los ojos al quitar un jersey, por ejemplo. Poner encima algo fresco y tapar para evitar el shock. Avisar inmediatamente al médico.

Productos químicos en ojos, piel o vestuario

Si el vertido afecta únicamente a una pequeña zona de piel, ésta debe lavarse inmediatamente con agua abundante durante 15 minutos por lo menos. Cualquier joya debe quitarse para evitar que queden residuos.

Si no hay daño aparente, lavar nuevamente con agua tibia y jabón. Comprobar en las hojas de seguridad si puede esperarse algún efecto posterior. Normalmente es preferible acudir al médico incluso si la quemadura es pequeña.

Los productos sólidos que caen sobre la piel suelen eliminarse con facilidad cepillándolos y arrojándolos al contenedor adecuado. En caso de que el sólido quede adherido a la piel, es conveniente consultar al profesor.

Los vertidos de gran cantidad de líquido en la piel o cualquier vertido sobre la ropa suelen tener consecuencias más graves. No debe perderse tiempo intentando sacudir el producto. Hay que acudir inmediatamente a la ducha de seguridad y, una vez debajo de ella, hay que quitarse toda la ropa contaminada mientras el agua está cayendo.

El tiempo cuenta, pero hay que tener cuidado de no esparcir el producto por el resto de la piel o los ojos. Para evitar contaminar los ojos por intentar quitar un jersey, es preferible que otra persona ayude cortándolo con unas tijeras.

Dejar caer el agua por encima durante unos 15 minutos. Si volvieran las molestias, lavar durante más tiempo. No usar cremas ni lociones y acudir rápidamente al médico.

Las ropas contaminadas deben desecharse en el contenedor apropiado, o lavarse por separado.

En el caso de salpicaduras en los ojos, debe usarse el lavaojos durante 15 minutos por lo menos, sujetando los párpados con los dedos para mantener el ojo abierto, mientras se intenta moverlo en todas direcciones. Siempre debe revisarse por el médico.

Otros accidentes

Si se ingiere un compuesto químico peligroso, deben seguirse las instrucciones de la hoja de seguridad.

Nunca debe darse nada por vía oral a una persona inconsciente. Se debe intentar conocer exactamente cual es el compuesto ingerido para poderlo comunicar al médico.

En caso de que no respire se debe intentar la respiración boca a boca; si hay hemorragia, se debe intentar contenerla; se debe mantener abrigado al herido para evitar el shock.

Salvo en el caso de un corte muy leve, siempre debe acudirse al médico

Nunca debe tocarse a una persona que se encuentra en contacto con un cable eléctrico activo. ¡Hay que desconectar la electricidad en primer lugar!. De lo contrario uno puede resultar también dañado gravemente.

31
Limpieza de vertidos

Los vertidos deben limpiarse con rapidez de forma eficiente y apropiada. Pide ayuda al profesor para saber lo que hay que hacer. Avisa a los compañeros para minimizar sus riesgos y que el compuesto se esparza. Muchas veces es más importante la toxicidad del compuesto vertido que la cantidad del mismo.

Si se vierte un producto inflamable, hay que avisar inmediatamente a todo el mundo y desconectar cualquier fuente de ignición posible, abandonando el área. El trabajo con productos tóxicos inflamables debe realizarse en vitrina, por lo que si hay un vertido, hay que bajar la ventana de la vitrina y avisar al profesor.

Cualquier vertido debe remediarse lo antes posible. Cuanto menor sea la zona afectada. Más rápidamente se limpiará y serán menores los efectos. Un vertido de una cantidad pequeña de líquido puede recogerse absorbiéndolo con papel, por ejemplo, pero este papel hay que depositarlo en el contenedor adecuado. Debe tenerse un cuidado especial con el posible peligro de incendio que puedan presentar los líquidos inflamables recogidos de esta manera.

Los vertidos de compuestos sólidos pueden barrerse y arrojarse al contenedor adecuado, teniendo siempre cuidado de que no puedan reaccionar con nada que haya sido arrojado previamente al mismo contenedor.

Si es posible, debe neutralizarse el vertido antes de limpiar el área. En cualquier caso deben usarse guantes y equipo de protección mientras se limpia la zona. Y lo mismo debe hacerse con el material de vidrio si se ha roto en el accidente. Para arrojarlo al contenedor de vidrio, debe estar limpio de residuos tóxicos o peligrosos.
Apéndice

Productos químicos incompatibles

Esta tabla es únicamente una guía

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>Incompatible con</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetileno</td>
<td>Cloro, bromo, cobre, flúor, plata, mercurio</td>
</tr>
<tr>
<td>Acetona</td>
<td>Ácido nítrico, ácido sulfúrico, otros agentes oxidantes</td>
</tr>
<tr>
<td>Ácido acético</td>
<td>Agentes oxidantes p.ej., ácido crómico, ácido nítrico, compuestos hidroxilados,</td>
</tr>
<tr>
<td></td>
<td>etilenglicol, ácido perclórico, peróxidos, permanganatos</td>
</tr>
<tr>
<td>Ácido cianhídrico (anhidro)</td>
<td>Ácidos</td>
</tr>
<tr>
<td>Ácido fluorhídrico</td>
<td>Permanganato potásico. Ácido sulfúrico</td>
</tr>
<tr>
<td>Ácido nítrico</td>
<td>Acido acético, anilina, ácido sulfúrico, ácido crómico, ácido cianhídrico, sulfuro</td>
</tr>
<tr>
<td></td>
<td>de hidrógeno, líquidos y gases inflamables o combustibles, cobre, latón, bronce,</td>
</tr>
<tr>
<td></td>
<td>metales pesados, álcalis</td>
</tr>
<tr>
<td>Ácido oxálico</td>
<td>Plata, cloritos, urea</td>
</tr>
<tr>
<td>Ácido perclórico</td>
<td>Agentes reductores como el anhídrido acético, bismuto y sus aleaciones, alcoholes,</td>
</tr>
<tr>
<td></td>
<td>papel, madera, grasas, aceites</td>
</tr>
<tr>
<td>Ácido sulfúrico</td>
<td>Permanganatos, agua, disoluciones acuosas, agentes reductores, cloratos, percloratos, ácido nítrico</td>
</tr>
<tr>
<td>Amoniaco (anhidro)</td>
<td>Mercurio (por ejemplo en manómetros), cloro, hipoclorito cálculo, yodo, bromo,</td>
</tr>
<tr>
<td></td>
<td>ácido fluorhídrico</td>
</tr>
<tr>
<td>Anilina</td>
<td>Ácido nítrico, peróxido de hidrógeno</td>
</tr>
<tr>
<td>Azidas</td>
<td>Ácidos</td>
</tr>
<tr>
<td>Bromo</td>
<td>Ver cloro</td>
</tr>
<tr>
<td>Carbón activo</td>
<td>Hipoclorito cálculo, otros agentes oxidantes</td>
</tr>
<tr>
<td>Cianuros</td>
<td>Ácidos</td>
</tr>
<tr>
<td>Cloratos</td>
<td>Sales de amonio, ácidos, metales en polvo, azufre, materiales combustibles u orgánicos finamente divididos</td>
</tr>
<tr>
<td>Cloro</td>
<td>Amoniaco, acetileno, butadieno, butano, metano, propano (u otros gases del petróleo), hidrógeno, carburó sodico, benceno, metales finamente divididos, trementina</td>
</tr>
<tr>
<td>Cobre</td>
<td>Acetileno, peróxido de hidrógeno</td>
</tr>
<tr>
<td>Derivados de arsénico</td>
<td>Agentes reductores</td>
</tr>
<tr>
<td>Dióxido de cloro</td>
<td>Amoniaco, metano, fosfina, sulfuro de hidrógeno</td>
</tr>
<tr>
<td>Fósforo (blanco)</td>
<td>Aire, oxígeno, álcalis, halógenos, óxidos de halógeno, agentes oxidantes.</td>
</tr>
<tr>
<td>Hidrocarburos (p. ej. butano, propano, benceno)</td>
<td>Flúor, cloro, bromo, ácido crómico, peróxido de sodio, otros agentes oxidantes</td>
</tr>
<tr>
<td>Hipocloritos</td>
<td>Ácidos, carbón activo, amoniaco</td>
</tr>
<tr>
<td>Líquidos inflamables</td>
<td>Nitrato amónico, ácido crómico, peróxido de hidrógeno, ácido nítrico, peróxido de sodio, halógenos</td>
</tr>
<tr>
<td>Mercurio</td>
<td>Acetileno, amoniaco, ácido fulmínico (HONC)</td>
</tr>
<tr>
<td>Metales alcalinos y alcalinotérreos</td>
<td>Agua, tetracloruro de carbono, otros hidrocarburos clorados, dióxido de carbono, halógenos</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Nitrato amónico</td>
<td>Ácidos, metales en polvo, líquidos inflamables, cloratos, nitritos, azufre, materiales orgánicos o combustibles finamente divididos.</td>
</tr>
<tr>
<td>Nitratos</td>
<td>Metales y no metales en polvo, sulfuros metálicos, líquidos inflamables o combustibles</td>
</tr>
<tr>
<td>Nitritos</td>
<td>Sales de amonio, amidas, fosfuros, agentes reductores</td>
</tr>
<tr>
<td>Nitroalcanoss</td>
<td>Ácidos, bases, aminas, halogenuros</td>
</tr>
<tr>
<td>Óxido cálcico</td>
<td>Agua</td>
</tr>
<tr>
<td>Oxígeno</td>
<td>Aceites, grasas, hidrógeno, y otros agentes reductores, incluyendo sólidos, líquidos y gases inflamables o combustibles</td>
</tr>
<tr>
<td>Percloratos</td>
<td>Ver cloratos</td>
</tr>
<tr>
<td>Permanganato potásico</td>
<td>Glicerina, etilénglicol, benzaldehido, otros agentes reductores, ácido sulfúrico</td>
</tr>
<tr>
<td>Peróxido de sodio</td>
<td>Alcohol etílico y metílico, ácido acético glacial, anhídrido acético, benzaldehído, sulfuro de carbono, glicerina, etilénglicol, acetato de etilo, acetato de metilo, furfural</td>
</tr>
<tr>
<td>Potasio</td>
<td>Tetracloruro de carbono, dióxido de carbono, agua</td>
</tr>
<tr>
<td>Sodio</td>
<td>Tetracloruro de carbono, dióxido de carbono, agua</td>
</tr>
<tr>
<td>Sulfuro de hidrógeno</td>
<td>Óxidos metálicos, cobre en polvo, gases oxidantes</td>
</tr>
<tr>
<td>Sulfuros</td>
<td>Ácidos</td>
</tr>
<tr>
<td>Trióxido de cromo (ácido crómico)</td>
<td>Ácido acético, naftaleno, alcanfor, glicerol, alcohol, líquidos inflamables</td>
</tr>
<tr>
<td>Yodo</td>
<td>Acetíleno, amoníaco (acuoso o anhidro), hidrógeno</td>
</tr>
</tbody>
</table>