Publication:
Binding energy of hydrogenic impurities in quantum dots under intense laser radiation

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013-08-21
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing Ltd.
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We calculate the binding energy of on-and off-center hydrogenic impurities in a parabolic quantum dot subjected to an intense high-frequency laser field. An exactly solvable model that replaces the actual Coulomb interaction with the donor by a non-local separable potential is introduced for calculating the binding energy. The separable potential allows us to solve the problem exactly and all calculations are carried out analytically. The action of the laser irradiation results in dressed Coulomb and confinement potentials. At low laser intensity the binding energy is found to decrease when the impurity is shifted away from the origin. At high laser intensity and strong confinement the opposite behavior is observed. We propose a simple one-dimensional model that explains the observed crossover.
Description
©2013 IOP Publishing Ltd. Work at Madrid was supported by MICINN (project MAT2010-17180). CG-S acknowledges financial support from Comunidad de Madrid and European Social Foundation. TA was sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA8655-12-1-2052.
Keywords
Citation
[1] Zhu J-L, Zhao J-H, Duan W-H and Gu B-L 1992 Phys. Rev. B 46 7546 [2] Porras-Montenegro N and Pérez-Merchancano S T 1992 Phys. Rev. B 46 9780 [3] Porras-Montenegro N, Pérez-Merchancano S T and Latgé A 1993 J. Appl. Phys. 74 7624 [4] Ribeiro F J and Latge A 1994 Phys. Rev. B 50 4913 [5] Zhu J-L, Zhao J-H and Xiong J-J 1994 J. Phys.: Condens. Matter 6 5097 [6] Bose C 1998 J. Appl. Phys. 83 3089 [7] Hsieh C-Y and Chuu D-S 2000 J. Phys.: Condens. Matter 12 8641 [8] Zaratiegui J, Pietiläinen P and Hyvönen P 2002 Phys. Rev. B 66 195324 [9] García L F, Marín J H and Mikhailov I D B 2006 Brazilian J. Phys. 36 878 [10] Lima R P A, Amado M and Domínguez-Adame F 2008 Nanotechnology 19 135402 [11] Lima R P A and Amado M 2008 J. Lumin. 128 858 [12] Bastard G 1981 Phys. Rev. B 24 4714 [13] Bastard G 1982 Surf. Sci. 113 165 [14] Morgan G P, Ogawa K, Hiruma K, Kakibayashi H and Katsuyama T 1991 Solid State Commun. 80 235 [15] Fanyao Q, Fonseca A L and Nunes O A C 1996 Phys. Rev. B 54 16405 [16] Fanyao Q, Fonseca A L and Nunes O A C 1997 J. Appl. Phys. 82 1236 [17] Gavrila M and Kaminski J Z 1984 Phys. Rev. Lett. 52 613 [18] Pont M, Walet N R, Gavrila M and McCurdy C W 1988 Phys. Rev. Lett. 61 939 [19] Ehlotzky F 1988 Phys. Lett. A 126 524 [20] Kramers H 1956 Collected Scientific Papers (Amsterdam: North-Holland) p 866 [21] Henneberger W C 1968 Phys. Rev. Lett. 21 838 [22] Yesigul U, Sakiroglu S, Kasapoglu E, Sari H and Sokmen I 2011 Physica B 406 1441 [23] Knight B W and Peterson G A 1963 Phys. Rev. 132 1085 [24] Sievert P R and Glasser M L 1973 Phys. Rev. B 7 1265 [25] López S and Domínguez-Adame F 2002 Semicond. Sci. Technol. 17 227 [26] Gonzalez-Santander C and Domínguez-Adame F 2010 Phys. Lett. A 374 2259 [27] Davies J H 1998 The Physics of Low-dimensional Semiconductors (Cambridge: Cambridge University Press) [28] Lima C A S and Miranda L C M 1981 Phys. Rev. A 23 3335 [29] Abramowitz M and Stegun I 1972 Handbook of Mathematical Functions (New York: Dover) [30] Chruściński D 2006 Ann. Phys. 321 840 [31] Tasco V, Deguffroy N, Baranov A N, Tournié E, Satpati B, Trampert A, Dunaevskii M S and Titkov A 2006 Appl. Phys. Lett. 89 263118 [32] Deguffroy N, Tasco V, Baranov A N, Tournié E, Satpati B, Trampert A, Dunaevskii M S, Titkov A and Ramonda M 2007 J. Appl. Phys. 101 124309
Collections