Publication:
Scattering of massless Dirac particles by oscillating barriers in one dimension

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-02-28
Authors
González-Santander de la Cruz, Clara
Fuentevilla, c. H.
Díez, E.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study the scattering of massless Dirac particles by oscillating barriers in one dimension. Using the Floquet theory, we find the exact scattering amplitudes for time-harmonic barriers of arbitrary shape. In all cases the scattering amplitudes are found to be independent of the energy of the incoming particle and the transmission coefficient is unity. This is a manifestation of the Klein tunneling in time-harmonic potentials. Remarkably, the transmission amplitudes for arbitrary sharply-peaked potehtials also become independent of the driving frequency. Conditions for which barriers of finite width can be replaced by sharply-peaked potentials are discussed.
Description
©2014 Elsevier B.V. All rights reserved. This work was supported by MICINN (projects MAT2010-17180 and FIS2009-07880), JCYL (project SA226U13) and USAL (project KBBB). C.G.-S. acknowledges financial upport from Comunidad de Madrid and European Social Foundation.
Keywords
Citation
[1] P. A. M. Dirac, Proc. R. Soc. Lond. A 117 (1928) 610. [2] B. Thaller, The Dirac Equation, Springer-Verlag, 1992. [3] O. Klein, Z. Phys. 53 (1929) 157. [4] A. Calogeracos, N. Dombey, Contemp. Phys. 40 (1999) 313–321. [5] B. H. J. McKellar, G. J. Stephenson, Phys. Rev. A 36 (1987) 2566. [6] F. Sauter, Z. Phys. 69 (1931) 547. [7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306 (2004) 666–669. [8] C. W. J. Beenakker, Rev. Mod. Phys. 80 (2008) 1337. [9] P. Allain, J. Fuchs, Eur. Phys. J. B 83 (2011) 301–317 [10] J. M. Cerveró, E. Diez, Int. J. Theor. Phys. 50 (2011) 2134–2143. [11] P. R. Wallace, Phys. Rev. 71 (1947) 622. [12] M. I. Katsnelson, K. S. Novoselov, A. K. Geim, Nat. Phys. 2 (2006) 620. [13] M. I. Katsnelson, Graphene. Carbon in two dimensions, Cambridge University Press, 2012. [14] N. Stander, B. Huard, D. Goldhaber-Gordon, Phys. Rev. Lett. 102 (2009) 026807. [15] A. F. Young, P. Kim, Nat. Phys. 5 (2009) 222–226. [16] M. G. Calkin, D. Kiang, Y. Nogami, Phys. Rev. C 38 (1988) 1076–1077. [17] F. Domínguez-Adame, J. Phys. A: Math. Gen. 23 (1990) 1993. [18] D. F. Martinez, L. E. Reichl, Phys. Rev. B 64 (2001) 245315. [19] B. Trauzettel, Y. M. Blanter, A. F. Morpurgo, Phys. Rev. B 75 (2007) 035305. [20] M. A. Zeb, K. Sabeeh, M. Tahir, Phys. Rev. B 78 (2008) 165420. [21] W.-T. Lu, S.-J. Wang, W. Li, Y.-L. Wang, C.-Z. Ye, H. Jiang, J. Appl. Phys. 111 (2012) 103717. [22] B. Korenev, Bessel functions and their applications, Taylor & Francis, 2002.
Collections