Publication:
Test of universal scaling of ac conductivity in ionic conductors

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2001-10-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Electrical relaxation data of crystalline yttria-stabilized zirconia are used to analyze the permittivity change observed in the spectra of the real part of the permittivity in ionic conducting materials. It is found that this permittivity change is independent of both temperature and mobile-ion concentration, and it is determined solely by the degree of interaction among ions in the relaxation process. This finding is at odds with an expression for the permittivity change in the framework of a proposed universal ac conductivity scaling law for glassy ionic conductors. On the other hand, not only the total permitivity change, but also the particular frequency dependence of the permittivity spectra is found to be consistent with the analysis of electrical relaxation in terms of the electric modulus. The results of this work give further support to the use of the electric modulus in describing electrical relaxation in ionic conductors.
Description
© 2001 The American Physical Society. The work performed at the Naval Research Laboratory was supported by ONR. We thank J. Ullrich for help in the dielectric measurements and J. Santamaría and C. T. Moynihan for helpful discussions.
Unesco subjects
Keywords
Citation
1) P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses, 13, 171 (1972). 2) V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, J. Am. Ceram. Soc., 55, 492 (1972). 3) C.T. Moynihan, L.P. Boesch, N.L. Laberge, Phys. Chem. Glasses, 14, 122 (1973). 4) F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, J. Phys. Chem., 78, 639 (1974). 5) A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983). 6) C.A. Angell, Chem. Rev., 90, 523 (1990). 7) J.H. Simmons, P.B. Elterman, C.J. Simmons, R.K. Mohr, J. Am. Ceram. Soc., 62, 158 (1979). 8) J.F. Cordaro, M. Tomozawa, J. Am. Ceram. Soc., 64, 713 (19819. 9) K.L. Ngai, R.W. Rendell, H. Jain, Phys. Rev. B, 30, 2133 (1984). 10) H.K. Patel, S.W. Martin, Phys. Rev. B, 45, 10 292 (1992). 11) C. Cramer, K. Funke, T. Saatkamp, Philos. Mag. B, 71, 701 (1995). 12) D.L. Sidebottom, P.F. Green, R.K. Brow, Phys. Rev. B, 56, 170 (1997). 13) C. León, J. Santamaría, M.A. París, J. Sanz, J. Ibarra, L.M. Torres, Phys. Rev. B, 56, 5302 (1997). 14) P. Lunkenheimer, A. Pimenov, A. Loidl, Phys. Rev. Lett., 78, 2995 (1997). 15) C. León, M.L. Lucía, J. Santamaría, Phys. Rev. B, 55, 882 (1997). 16) A. Pimenov, J. Ullrich, P. Lunkenheimer, A. Loidl, C.H. Rüscher, Solid State Ionics, 109, 111 (1998). 17) C. Cramer, M. Buscher, Solid State Ionics, 105, 109 (1998). 18) K.L. Ngai, J. Non-Cryst. Solids, 248, 194 (1999). 19) K.L. Ngai, C.T. Moynihan, MRS Bull., 23, 11, 51 (1998). 20) H. Jain, S. Krishnaswami, Solid State Ionics, 105, 129 (1998). 21) B. Roling, A. Happe, K. Funke, M.D. Ingram, Phys. Rev. Lett., 78, 2160 (1997). 22) B. Roling, Solid State Ionics, 105, 185 (1998). 23) D.L. Sidebottom, Phys. Rev. Lett., 82, 3653 (1999). 24) K.L. Ngai, R.W. Rendell, Phys. Rev. B, 61, 9393 (2000). 25) K.L. Ngai, Phys. Rev. B, 48, 13, 481 (1993) --- J. Chem. Phys., 98, 6424 (1993). 26) K.L. Ngai, G.N. Greaves, C.T. Moynihan, Phys. Rev. Lett., 80, 1018 (1998). 27) K.L. Ngai, C. León, Phys. Rev. B, 60, 9396 (1999). 28) H. Wagner, R. Richter, J. Appl. Phys., 85, 1750 (1999). 29) R. Kohlrausch, Ann. Phys. (Leipzig), 72, 393 (1847) --- G. Williams, D.C. Watts, Trans. Faraday Soc., 66, 80 (1970). 30) K.L. Ngai, U. Strom, Phys. Rev. B, 38, 10, 350 (1988). 31) B. Munro, M. Schrader, P. Heitjans, Ber. Bunsunger, Ber. Bunsenges, Phys. Chem., 96, 1718 (1992) --- W. Franke, P. Heitjans, ibid., 96, 1674 (1992).
Collections