Publication:
Nature and properties of the Johari-Goldstein β-relaxation in the equilibrium liquid state of a class of glass-formers

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2001-07-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Previous dielectric relaxation measurements of glycerol and propylene carbonate and new results on propylene glycol performed below the conventional glass transition temperatures T_(g) after long periods of aging all show that the excess wing (a second power law at higher frequencies) in the isothermal dielectric loss spectrum, develops into a shoulder. These results suggest that the excess wing, a characteristic feature of a variety of glass-formers, is the high frequency flank of a Johari–Goldstein β-relaxation loss peak submerged under the α-relaxation loss peak. With this interpretation of the excess wing assured, the dielectric spectra of all three glass-formers measured at temperatures above T_(g) are analyzed as a sum of a α-relaxation modeled by the Fourier transform of a Kohlrausch–Williams–Watts function and a β-relaxation modeled by a Cole–Cole function. Good fits to the experimental data have been achieved. In addition to the newly resolved β-relaxation on propylene glycol, the important results of this work are the properties of the β-relaxation in this class of glass-formers in the equilibrium liquid state obtained over broad frequency and temperature ranges.
Description
© 2001 American Institute of Physics. This work was supported by the Deutsche Forschungsgemeinschaft, Grant No. LO264/8-1 and partly by the BMBF, contract No. 13N6917. The part of the work performed at the Naval Research Laboratory was supported by the Office of Naval Research.
Unesco subjects
Keywords
Citation
1) P. K. Dixon, L. Wu, S. R. Nagel, B. D. Williams, J. P. Carini, Phys. Rev. Lett., 65, 1108 (1990). 2) A. Hofmann, F. Kremer, E. W. Fischer, A. Schönhals, in Disorder Effects on Relaxational Processes, edited by R. Richert and A. Blumen (Springer, Berlin, 1994), p. 309. 3) R. L. Leheny, S. R. Nagel, Europhys. Lett., 39, 447 (1997). 4) A. Kudlik, S. Benkhof, T. Blochowicz, C. Tschirwitz, E. Rössler, J. Mol. Struct., 479, 201 (1999). 5) R. V. Chamberlin, Phys. Rev. B, 48, 15638 (1993). 6) G. Tarjus, D. Kivelson, in Supercooled Liquids: Advances and Novel Applications, edited by J. T. Fourkas et al. (American Chemical Society, Washington, D.C., 1997), p. 67. 7) G. P. Johari, M. Goldstein, J. Chem. Phys., 53, 2372 (1970). 8) G. P. Johari, in The Glass Transition and the Nature of the Glassy State, edited by M. Goldstein and R. Simha [Ann. N.Y. Acad. Sci., 279, 117 (1976)]. 9) J. Wiedersich, T. Blochowicz, S. Benkhof, A. Kudlik, N. V. Surovtsev, C. Tschirwitz, V. N. Novikov, E. Rössler, J. Phys.: Condens. Matter, 11, A147, (1999). 10) In fact, in Refs. 4 and 9 the terms "Type A" and "Type B" were used. However, these terms were earlier introduced in the discussion of dielectric properties of polymers [W. H. Stockmayer, Pure Appl. Chem., 15, 539 (1987)]. Therefore, to avoid confusion, in the present work we use the terms "Class A" and "Class B" instead. 11) N. B. Olsen, J. Non-Cryst. Solids, 235–237, 399 (1998). 12) M. Jiménez-Ruiz, M. A. González, F. J. Bermejo, M. A. Miller, N. O. Birge, I. Cendoya, A. Alegría, Phys. Rev. B, 59, 9155 (1999). 13) C. León, K. L. Ngai, J. Phys. Chem. B, 103, 4045 (1999). 14) C. León, K. L. Ngai, C. M. Roland, J. Chem. Phys., 110, 11585 (1999). 15) H. Wagner, R. Richert, J. Chem. Phys., 110, 11660 (1999). 16) U. Schneider, R. Brand, P. Lunkenheimer, A. Loidl, Phys. Rev. Lett., 84, 5560 (2000). 17) U. Schneider, P. Lunkenheimer, R. Brand, A. Loidl, J. Non-Cryst. Solids, 235–237, 173 (1998). 18) U. Schneider, P. Lunkenheimer, R. Brand, A. Loidl, Phys. Rev. E, 59, 6924 (1999). 19) A. Kudlik, S. Benkhof, R. Lenk, E. Rössler, Europhys. Lett., 32, 511 (1995). 20) S. H. Chung, G. P. Johari, K. Pathmanathan, J. Polym. Sci., Part B: Polym. Phys., 24, 2655 (1986). 21) R. L. Leheny, S. R. Nagel, Phys. Rev. B, 57, 5154 (1998). 22) G. P. Johari, E. Whalley, Faraday Symp. Chem. Soc., 6, 23 (1972) --- G. P. Johari, K. Pathmanathan, J. Chem. Phys., 85, 6811 (1986). 23) H. Fujimori, M. Oguni, J. Chem. Thermodyn., 26, 367 (1994) --- W. Schnauss, F. Fujara, H. Sillescu, J. Chem. Phys., 97, 1378 (1992). 24) K. L. Ngai, Phys. Rev. E, 57, 7346 (1998) --- J. Chem. Phys., 109, 6982 (1998). 25) R. Kohlrausch, Ann. Phys. (Leipzig), 167, 56 (1854) --- ibid., 167, 179 (1854) --- G. Williams, D. C. Watts, Trans. Faraday Soc., 66, 80 (1970). 26) K. L. Ngai, Comments Solid State Phys., 9, 127 (1979). 27) K. Y. Tsang, K. L. Nagi, Phys. Rev. E, 54, 3067 (1997) --- K. Y. Tsang, K. L. Ngai, Phys. Rev. E, 56, R17 (1997) --- K. L. Ngai, K. Y. Tsang, Phys. Rev. E, 60, 4511 (1999). 28) K. L. Ngai, R. W. Rendell, Supercooled Liquids, Advances and Novel Applications, ACS Symposium Series Vol. 676, edited by J. T. Fourkas, D. Kivelson, U. Mohanty, and K. Nelson (American Chemical Society, Washington, D.C., 1997), Chap. 4, pp. 45–66. 29) P. Lunkenheimer, U. Schneider, R. Brand, A. Loidl, Contemp. Phys., 41, 15 (2000). 30) P. Lunkenheimer, Dielectric Spectroscopy of Glassy Dynamics (Shaker, Aachen, 1999). 31) U. Schneider, P. Lunkenheimer, A. Pimenov, R. Brand, A. Loidl, Ferroelectrics, cond-mat/9908279 (in press). 32) P. Lunkenheimer, U. Schneider, R. Brand, A. Loidl, Physikalische Blätter, 56, 35 (2000). 33) P. Lunkenheimer, A. Pimenov, M. Dressel, Yu. G. Goncharov, R. Böhmer, A. Loidl, Phys. Rev. Lett., 77, 318 (1996) --- P. Lunkenheimer, A. Pimenov, M. Dressel, B. Gorshunov, U. Schneider, B. Schiener, A. Loidl, in Supercooled Liquids, Advances and Novel Applications, edited by J. T. Fourkas et al., ACS Symposium Series Vol. 676 (American Chemical Society, Washington, D.C., 1997), p. 168. 34) J. Wuttke, M. Ohl, M. Goldammer, et al., Phys. Rev. E, 61, 2730 (2000) --- W. Götze, Th. Voigtmann, Phys. Rev. E, 61, 4133 (2000). 35) P. Lunkenheimer, U. Schneider, R. Brand, A. Loidl, in Slow Dynamics in Complex Systems: Eighth Tohwa University International Symposium, edited by M. Tokuyama and I. Oppenheim (AIP, New York, 1999), AIP Conf. Proc. No. 469, p. 433 --- R. Casalini, K. L. Ngai, C. M. Roland, J. Chem. Phys., 112, 5181 (2000). 36) For the concept of the fictive temperature, see e.g., C. T. Moynihan, et al., Ann. N.Y. Acad. Sci., 279, 15 (1976). 37) U. Schneider, et al., (unpublished). 38) R. V. Chamberlin, Phys. Rev. Lett., 82, 2520 (1999). 39) For a review of various theories of the glass transition, see: J. Jäckle, Rep. Prog. Phys., 49, 171 (1986). 40) D. W. Davidson, R. H. Cole, J. Chem. Phys., 18, 1417 (1950) --- D. W. Davidson, R. H. Cole, J. Chem. Phys., 19, 1484 (1951). 41) K. S. Cole, R. H. Cole, J. Chem. Phys., 9, 341 (1941). 42) At low temperatures, the transition region between a peak and excess wing seems slightly too smooth to be met perfectly by the fit curves. As was shown in Refs. 16 and 30, this problem can be overcome using a CD function for the a-peak. 43) U. Bengtzelius, W. Götze, A. Sjölander, J. Phys. C, 17, 5915 (1984) --- E. Leutheuser, Phys. Rev. A, 29, 2765 (1984) --- W. Götze, Z. Phys. B: Condens. Matter, 60, 195 (1985) --- W. Götze, L. Sjögren, Rep. Prog. Phys., 55, 241 (1992). 44) R. Brand, P. Lunkenheimer, U. Schneider, A. Loidl, Phys. Rev. B, 62, 8878 (2000). 45) O. E. Kalinovskaya, J. K. Vij, J. Chem. Phys., 112, 3262 (2000). 46) F. Stickel, E. W. Fischer, A. Schönhals, F. Kremer, Phys. Rev. Lett., 73, 2936 (1994). 47) F. Stickel, Untersuchung der Dynamik in niedermolekularen Flüssigkeiten mit Dielektrischer Spektroskopie (Shaker, Aachen, 1995). 48) H. Vogel, Z. Phys., 22, 645 (1921) --- G. S. Fulcher, J. Am. Ceram. Soc., 8, 339 (1925) --- G. Tammann, W. Hesse, Z. Anorg. Allg. Chem., 156, 245 (1926). 49) F. Stickel, E. W. Fischer, R. Richert, J. Chem. Phys., 102, 6251 (1995). 50) F. Stickel, E. W. Fischer, R. Richert, J. Chem. Phys., 104, 2043 (1996). 51) K. L. Ngai, J. H. Magill, D. J. Plazek, J. Chem. Phys., 112, 1887 (2000). 52) C. Hansen, F. Stickel, T. Berger, R. Richert, E. W. Richert, J. Chem. Phys., 107, 1086 (1997). 53) P. K. Dixon, Phys. Rev. B, 42, 8179 (1990). 54) In fact, in Refs. 29 and 30, instead of n = 1 - β_(KWW), the exponent of the CD function β_(CD) was discussed, which is closely related to β_(KWW). 55) A. Schönhals, F. Kremer, A. Hofmann, E. W. Fischer, E. Schlosser, Phys. Rev. Lett., 70, 3459 (1993). 56) K. L. Ngai, J. Phys.: Condens. Matter, 11, A119 (1999). 57) K. L. Ngai, C. M. Roland, Polymer, (in press). 58) J. Wierdersich, T. Blochowicz, S. Benkhof, A. Kudlik, N. V. Surovtsev, C. Tschirwitz, V. N. Novikov, E. Rössler, J. Phys.: Condens. Matter, 11, A147 (1999). 59) R. Nozaki, D. Suzuki, S. Ozawa, Y. Shiozaki, J. Non-Cryst. Solids, 235–237, 393 (1998). 60) N. G. McCrum, B. E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, London, 1967 and Dover Publications, New York, 1991) --- A. Hofmann, A. Alegría, J. Colmenero, L. Willner, E. Buscaglia, N. Hadjischristidis, Macromolecules, 29, 129 (1996). 61) G. Adam, J. H. Gibbs, J. Chem. Phys., 43, 139 (1965).
Collections