Publication:
Choroidal Vessel Wall: Hypercholesterolaemia-Induced Dysfunction and Potential Role of Statins

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-07-18
Authors
Ramirez Sebastian, Jose Manuel
Hoz Montañana, Rosa de
Gallego Collado, Beatriz Isabel
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Publisher
Haruo Sugi (editor)
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Description
© 2012 Ramírez et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Keywords
Citation
[1] Bill A, Sperber GO. Control of retinal and choroidal blood flow. Eye (London, England) 1990;4(Pt 2) 319-325. [2] Chen Y, Chang Y, Jyh Jiang M. Monocyte chemotactic protein-1 gene and protein expression in atherogenesis of hypercholesterolemic rabbits. Atherosclerosis 1999;143(1) 115-123. [3] Ross R. Atherosclerosis — An Inflammatory Disease. New England Journal of Medicine 1999;340(2)15-126. [4] Crispin S. Ocular lipid deposition and hyperlipoproteinaemia. Progress in Retinal and Eye Research 2002;21(2) 169-224. [5] Rong JX, Shen L, Chang YH, Richters A, Hodis HN, Sevanian A. Cholesterol Oxidation Products Induce Vascular Foam Cell Lesion Formation in Hypercholesterolemic New Zealand White Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology 1999;19(9) 2179-2188. [6] Salazar JJ, Ramírez AI, de Hoz R, Rojas B, Ruiz E, Tejerina T, Triviño A, Ramírez JM. Alterations in the choroid in hypercholesterolemic rabbits: reversibility after normalization of cholesterol levels. Experimental Eye Research 2007 ;84(3) 412-422. [7] Martínez-González J, Llorente-Cortés V, Badimon L. Biología celular y molecular de las lesiones ateroscleróticas. Revista Española de Cardiología 2001;54 218-231. [8] Schneider DB, Vassalli G, Wen S, Driscoll RM, Sassani AB, DeYoung MB, Linnemann R, Virmani R, Dichek DA. Expression of Fas Ligand in Arteries of Hypercholesterolemic Rabbits Accelerates Atherosclerotic Lesion Formation. Arteriosclerosis, Thrombosis, and Vascular Biology 2000;20(2) 298-308. [9] Öörni K, Pentikäinen MO, Ala-Korpela M, Kovanen PT. Aggregation, fusion, and vesicle formation of modified low density lipoprotein particles: molecular mechanisms and effects on matrix interactions. Journal of Lipid Research 2000;41(11) 1703-1714. [10] Klein R, Sharrett AR, Klein BEK, Chambless LE, Cooper LS, Hubbard LD, Evans G. Are Retinal Arteriolar Abnormalities Related to Atherosclerosis?: The Atherosclerosis Risk in Communities Study. Arteriosclerosis, Thrombosis, and Vascular Biology 2000;20(6) 1644-1650. [11] Wong TY, Klein R, Couper DJ, Cooper LS, Shahar E, Hubbard LD, Wofford MR, Sharrett AR. Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities Study. Lancet 2001;358(9288) 1134-1140. [12] Klein R, Klein BEK, Tomany SC, Wong TY. The relation of retinal microvascular characteristics to age-related eye disease: the Beaver Dam eye study. American Journal of Ophthalmology 2004;137(3) 435-444. [13] Wong TY, McIntosh R. Systemic associations of retinal microvascular signs: a review of recent population-based studies. Ophthalmic and Physiological Optics 2005;25(3) 195-204. [14] Matsusaka T. Cytoarchitecture of choroidal melanocytes. Experimental Eye Research 1982;35(5) 461-469. [15] Hogan MJ, Alvarado JA, Weddell JE. Histology of the human eye: an atlas and textbook. Toronto: W.B. Saunders Company Ed; 1971. [16] Tamm ER, Flügel-Koch C, Mayer B, Lütjen-Drecoll E. Nerve cells in the human ciliary muscle: ultrastructural and immunocytochemical characterization. Investigative Ophthalmology & Visual Science 1995;36(2) 414-426. [17] Poukens V, Glasgow BJ, Demer JL. Nonvascular contractile cells in sclera and choroid of humans and monkeys. Investigative Ophthalmology & Visual Science 1998;39(10) 1765-1774. [18] Flügel-Koch C, May CA, Lütjen-Drecoll E. Presence of a contractile cell network in the human choroid. Ophthalmologica. 1996;210(5) 296-302. [19] Ramírez JM, Triviño A, De Hoz R, Ramírez AI, Salazar JJ, García-Sánchez J. Immunohistochemical study of rabbit choroidal innervation. Vision Research 1999;39(7) 1249-1262. [20] Triviño A, De Hoz R, Salazar JJ, Ramírez AI, Rojas B, Ramírez JM. Distribution and organization of the nerve fiber and ganglion cells of the human choroid. Anatomy and Embryology 2002;205(5-6) 417-430. [21] Triviño A, de Hoz R, Rojas B, Salazar JJ, Ramírez AI, Ramírez JM. NPY and TH innervation in human choroidal whole-mounts. Histology and Histopathology 2005;20(2) 393-402. [22] Triviño A, Ramírez JM. Anatomofisiología de la coroides. In: Gómez-Ulla F, Marín F, Ramírez JM, Triviño A. (ed) La circulación coroidea. Barcelona: EDIKA-MED. S.A; 1989. p7-29. [23] Bron AJ, Tripathi RC, Tripathi BJ. The choroid and uveal vessels. In: Bron AJ, Tripathi RC, Tripathi BJ. (ed) Wolff’s Anatomy of the Eye and Orbit (Eighth edition). London: Chapman & Hall Medical; 1997. p371-410. [24] Riva CE, Alm A, Pournaras CJ. Ocular circulation. In: Levin LA, Nilsson SFE, Ver Hoeve J, Wu SM, Kaufman PL, Alm A. (ed) Adler's Physiology of the Eye. Edinburgh: Elsevier Saunders; 2011. p243-273. [25] Hayreh SS. The long posterior ciliary arteries. An experimental study. Albrecht von Graefes Archiv fur Klinische und Experimentelle Ophthalmologie 1974;192(3) 197-213. [26] Ducournau DH. A new technique for the anatomical study of the choroidal blood vessels. Ophthalmologica. 1982;184(4) 190-197. [27] Triviño A, Ramírez JM, García-Sánchez J. Study of the choroidal circulation in the human eye: experimental model. In: Flower RW. (ed) II Internacional Symposium on the Choroid. Maryland (USA); 1989. p32-42. [28] Risco JM, Grimson BS, Johnson PT. Angioarchitecture of the Ciliary Artery Circulation of the Posterior Pole. Archives of Ophthalmology 1981;99(5) 864-868. [29] Hayreh SS. Submacular choroidal vascular pattern. Experimental fluorescein fundus angiographic studies. Albrecht von Graefes Archiv fur Klinische und Experimentelle Ophthalmologie. 1974;192(3) 181-196. [30] Shimizu K, Ujiie K. Morphology of the submacular choroid: vascular structure. Ophthalmologica. 1981;183(1) 5-10. [31] Weiter JJ, Ernest JT. Anatomy of the choroidal vasculature. American Journal of Ophthalmology 1974;78(4) 583-590. [32] Ramírez JM, Triviño A, De Hoz R, González C, Borrego R, Salazar JJ, García-Sanchez J. Estudio de la vascularización ciliar en el conejo albino. Archivos de la Sociedad Española de Oftalmología 1990;5 823-30. [33] Buggage RR, Torcynski E, Grossniklaus HE. The uveal tract. In: Duane TD, Jaeger EA. (ed) Biomedical Foundations of Ophathalmology. CD-Rom. Philadelphia: Harper & Row Publishers; 2004. [34] Olver JM, Sharma A. Anatomy and physiology of the uveal tract. In: Easty JM, Sparrow JM. (ed) Oxford Textbook of Ophthalmology. New York: Oxford Medical Publications; 1999. p501-508. [35] Fryczkowski AW, Sherman MD, Walker J. Observations on the lobular organization of the human choriocapillaris. International Ophthalmology 1991;15(2) 109-120. [36] Triviño A, Ramírez JM, García-Sánchez J. Estudio comparativo entre la vascularización coroidea del hombre y el animal de experimentación. Archivos de la Sociedad Española de Oftalmología 1986;51 305-312. [37] Spitznas M. The fine structure of the chorioretinal border tissues of the adult human eye. Advances in Ophthalmology 1974; 2878-174. [38] Spitznas M, Reale E. Fracture faces of fenestrations and junctions of endothelial cells in human choroidal vessels. Investigative Ophthalmology 1975; 14(2) 98-107. [39] Melamed S, Ben-Sira I, Ben-Shaul Y. Ultrastructure of fenestrations in endothelial choriocapillaries of the rabbit--a freeze-fracturing study. British Journal of Ophthalmology 1980;64(7) 537-543. [40] Bill A, Tornquist P, Alm A. Permeability of the intraocular blood vessels. Transactions of the Ophthalmological Societies of the United Kingdom 1980;100(3) 332-336. [41] Törnquist P. Capillary permeability in cat choroid, studied with the single injection technique (II). Acta Physiologica Scandinavica 1979;106(4) 425-430. [42] Bill A. Blood circulation and fluid dynamics in the eye. Physiological Reviews 1975;55(3) 383-417. [43] Bill A, Sperber G, Ujiie K. Physiology of the choroidal vascular bed. International Ophthalmology 1983;6(2) 101-107. [44] Yamamoto T, Fukuda S, Obata H, Yamashita H. Electron microscopic observation of pseudopodia from choriocapillary endothelium. Japanese Journal of Ophthalmology 1994;38(2) 129-138. [45] Guymer R, Luthert P, Bird A. Changes in Bruch’s membrane and related structures with age. Progress in Retinal and Eye Research 1999;18(1) 59-90. [46] Guymer RH, Bird AC, Hageman GS. Cytoarchitecture of Choroidal Capillary Endothelial Cells. Investigative Ophthalmology Visual Science 2004;45(6) 1660-1666. [47] Manche EE, Korte GE. Ultrastructural evidence of remodelling in the microvasculature of the normal rabbit and human eye. Acta Anatomica 1990;138(2) 89-96. [48] Torczynski E, Tso MO. The architecture of the choriocapillaris at the posterior pole. American Journal of Ophthalmology 1976;81(4) 428-440. [49] Hogan MJ, Feeney L. Electron microscopy of the human choroid. III. The blood vessels. American Journal of Ophthalmology 1961;51 1084-1097. [50] Oyster CW. The human eye. Structure and function. Sunderland (Massachusetts): Sinauer Associates; 1999. [51] Triviño A, de Hoz R, Rojas B, Salazar JJ, Ramírez AI, Gallego B, Ramírez JM. The human choroid posseses substance P and calcitonine gene-related peptide intrinsic neurons. Acta Ophthalmologica 2009;87 (s244). [52] de Hoz R, Ramírez AI, Salazar JJ, Rojas B, Ramírez JM, Triviño A. Substance P and calcitonin gene-related peptide intrinsic choroidal neurons in human choroidal wholemounts. Histology and Histopathology 2008;23(10) 1249-1258. [53] Ruskell GL. Facial parasympathetic innervation of the choroidal blood vessels in monkeys. Experimental Eye Research 1971;12(2) 166-172. [54] De Stefano ME, Mugnaini E. Fine structure of the choroidal coat of the avian eye. Vascularization, supporting tissue and innervation. Anatomy and Embryology 1997;195(5) 393-418. [55] Rojas B, Ramírez AI, Salazar JJ, de Hoz R, Redondo A, Raposo R, Mendez T, Tejerina T, Triviño A, Ramírez JM. Low-dosage statins reduce choroidal damage in hypercholesterolemic rabbits. Acta Ophthalmologica 2011;89(7) 660-669. [56] Pournaras CJ, Rungger-Brändle E, Riva CE, Hardarson SH, Stefansson E. Regulation of retinal blood flow in health and disease. Progress in Retinal and Eye Research 2008;27(3) 284-330. [57] Feeney L, Hogan MJ. Electron microscopy of the human choroid. I. Cells and supporting structure. American Journal of Ophthalmology 1961;51 1057-1072. [58] Cavallotti C, Corrado BG, Feher J. The human choriocapillaris: evidence for an intrinsic regulation of the endothelium? Journal of Anatomy 2005;206(3) 243-247. [59] Le Beux YJ, Willemot J. Actin- and myosin-like filaments in rat brain pericytes. Anatomical Record 1978;190(4) 811-826. [60] Nickla DL, Wallman J. The multifunctional choroid. Progress in Retinal and Eye Research 2010;29(2) 144-168. [61] Alm A, Bill A, Young FA. The effects of pilocarpine and neostigmine on the blood flow through the anterior uvea in monkeys. A study with radioactively labelled microspheres. Experimental Eye Research 1973;15(1) 31-36. [62] Alm A, Bill A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Experimental Eye Research 1973;15(1) 15-29. [63] Alm A, Bill A. Blood flow and oxygen extraction in the cat uvea at normal and high intraocular pressures. Acta Physiologica Scandinavica 1970;80(1) 19-28. [64] Parver LM, Auker CR, Carpenter DO. The stabilizing effect of the choroidal circulation on the temperature environment of the macula. Retina 1982;2(2) 117-120. [65] Parver LM, Auker CR, Carpenter DO. Choroidal blood flow. III. Reflexive control in human eyes. Archives of Ophthalmology 1983;101(10) 1604-1606. [66] Parver LM, Auker CR, Carpenter DO, Doyle T. Choroidal blood flow II. Reflexive control in the monkey. Archives of Ophthalmology 1982;100(8) 1327-1330. [67] Yu DY, Alder VA, Cringle SJ, Brown MJ. Choroidal blood flow measured in the dog eye in vivo and in vitro by local hydrogen clearance polarography: validation of a technique and response to raised intraocular pressure. Experimental Eye Research 1988;46(3) 289-303. [68] Friedman E. Choroidal blood flow. Pressure-flow relationships. Archives of Ophthalmology 1970;83(1) 95-99. [69] Dollery CT, Bulpitt CJ, Kohner EM. Oxygen supply to the retina from the retinal and choroidal circulations at normal and increased arterial oxygen tensions. Investigative Ophthalmology 1969;8(6) 588-594. [70] Flower RW, Fryczkowski AW, McLeod DS. Variability in choriocapillaris blood flow distribution. Investigative Ophthalmology & Visual Science 1995;36(7) 1247-1258. [71] Kiel JW, Shepherd AP. Autoregulation of choroidal blood flow in the rabbit. Investigative Ophthalmology & Visual Science 1992;33(8) 2399-2410. [72] Ramírez JM, Ramírez AI, Salazar JJ, de Hoz R, Rojas B, Triviño A. Anatomofisiología de la úvea posterior: coroides. In: Monés J, Gómez-Ulla F. (ed) Degeneración macular asociada a la edad. Barcelona: Prous Science; 2005. p1-28. [73] Steinle JJ, Pierce JD, Clancy RL, G. Smith P. Increased Ocular Blood Vessel Numbers and Sizes Following Chronic Sympathectomy in Rat. Experimental Eye Research 2002;74(6) 761-768. [74] Schmidt RE, Beaudet LN, Plurad SB, Dorsey DA. Axonal cytoskeletal pathology in aged and diabetic human sympathetic autonomic ganglia. Brain Research 1997;769(2) 375-383. [75] Ishikawa S, Bensaoula T, Uga S, Mukuno K. Electron-microscopic study of iris nerves and muscles in diabetes. Ophthalmologica. 1985;191(3) 172-183. [76] Fulk GW, Bower A, McBride K, Boatright R. Sympathetic denervation of the iris dilator in noninsulin-dependent diabetes. Optometry and Vision Science 1991;68(12) 954-956. [77] Ernest JT. Regulatory mechanism of the choroidal vasculature in health and disease. In: Tso MOM. (ed) Retinal diseases: biomedical foundations and clinical management Philadelphia: JB Lippincott.; 1988. p125-130. [78] Grunwald JE, Hariprasad SM, DuPont J. Effect of aging on foveolar choroidal circulation. Archives of Ophthalmology 1998;116(2) 150-154. [79] Grunwald JE, Metelitsina TI, Dupont JC, Ying GS, Maguire MG. Reduced foveolar choroidal blood flow in eyes with increasing AMD severity. Investigative Ophthalmology & Visual Science 2005;46(3) 1033-1038. [80] Yorek MA, Coppey LJ, Gellett JS, Davidson EP. Sensory nerve innervation of epineurial arterioles of the sciatic nerve containing calcitonin gene-related peptide: effect of streptozotocin-induced diabetes. Experimental Diabesity Research 2004;5(3) 187-193. [81] Park JG, Oh GT. The role of peroxidases in the pathogenesis of atherosclerosis. BMB Reports 2011;44(8) 497-505. [82] Wittchen ES. Endothelial signaling in paracellular and transcellular leukocyte transmigration. Frontiers in Bioscience 2009;14 2522-2545. [83] Shibata N, Glass CK. Regulation of macrophage function in inflammation and atherosclerosis. Journal of Lipid Research 2009;50 SS 277-81. [84] Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology 2005;25(1) 29-38. [85] Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell 2001;104(4) 503-516. [86] Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 2003;42(6) 1075-1081. [87] Libby P, Okamoto Y, Rocha VZ, Folco E. Inflammation in atherosclerosis: transition from theory to practice. Circulation Journal 2010;74(2) 213-220. [88] Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Medica Indonesiana 2007;39(2) 86-93. [89] Grote K, Flach I, Luchtefeld M, Akin E, Holland SM, Drexler H, Schieffer B. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circulation Research 2003;92(11) 80-6. [90] De Keulenaer GW, Ushio-Fukai M, Yin Q, Chung AB, Lyons PR, Ishizaka N, Rengarajan K, Taylor WR, Alexander RW, Griendling KK. Convergence of redox-sensitive and mitogen-activated protein kinase signaling pathways in tumor necrosis factor-alphamediated monocyte chemoattractant protein-1 induction in vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology 2000;20(2) 385-391. [91] von Harsdorf R, Li PF, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 1999;99(22) 2934-2941. [92] Zhu P, Dettmann ES, Resink TJ, Luscher TF, Flammer J, Haefliger IO. Effect of Ox-LDL on endothelium-dependent response in pig ciliary artery: prevention by an ET(A) antagonist. Investigative Ophthalmology & Visual Science 1999;40(5) 1015-1020. [93] Tanner FC, Noll G, Boulanger CM, Luscher TF. Oxidized low density lipoproteins inhibit relaxations of porcine coronary arteries. Role of scavenger receptor and endothelium-derived nitric oxide. Circulation 1991;83(6) 2012-2020. [94] Anderson TJ, Meredith IT, Yeung AC, Frei B, Selwyn AP, Ganz P. The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. New England Journal of Medicine 1995;332(8) 488-493. [95] Feron O, Dessy C, Moniotte S, Desager JP, Balligand JL. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. Journal of Clinical Investigation 1999;103(6) 897-905. [96] Donners MMPC, Heeneman S, Daemen MJAP. Models of atherosclerosis and transplant arteriosclerosis: the quest for the best. Drug Discovery Today: Disease Models 2004;1(3) 257-263. [97] Zadelaar S, Kleemann R, Verschuren L, de Vries-Van der Weij J, van der Hoorn J, Princen HM, Kooistra T. Mouse Models for Atherosclerosis and Pharmaceutical Modifiers. Arteriosclerosis, Thrombosis, and Vascular Biology 2007;27(8) 1706-1721. [98] Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arteriosclerosis and Thrombosis 1994;14(1) 133-140. [99] Jawien J. The role of an experimental model of atherosclerosis: apoE-knockout mice in developing new drugs against atherogenesis. Current Pharmaceutical Biotechnology 2012; [Epub ahead of print] PMID: 22280417 [100] Davignon J. Apolipoprotein E and atherosclerosis: beyond lipid effect. Arteriosclerosis, Thrombosis, and Vascular Biology 2005;25(2) 267-269. [101] Ali K, Middleton M, Pure E, Rader DJ. Apolipoprotein E suppresses the type I inflammatory response in vivo. Circulation Research 2005;97(9) 922-927. [102] Grainger DJ, Reckless J, McKilligin E. Apolipoprotein E modulates clearance of apoptotic bodies in vitro and in vivo, resulting in a systemic proinflammatory state in apolipoprotein E-deficient mice. Journal of Immunology 2004;173(10) 6366-6375. [103] Knowles JW, Maeda N. Genetic modifiers of atherosclerosis in mice. Arteriosclerosis, Thrombosis, and Vascular Biology 2000;20(11) 2336-2345. [104] Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. Journal of Clinical Investigation 1994;93(5) 1885-1893. [105] van Vlijmen BJ, van den Maagdenberg AM, Gijbels MJ, van der Boom H, HogenEsch H, Frants RR, Hofker MH, Havekes LM. Diet-induced hyperlipoproteinemia and atherosclerosis in apolipoprotein E3-Leiden transgenic mice. Journal of Clinical Investigation 1994;93(4) 1403-1410. [106] Jacobsson L. Comparison of experimental hypercholesterolemia and atherosclerosis in Gottingen mini-pigs and Swedish domestic swine. Atherosclerosis 1986;59(2) 205-213. [107] Turk JR, Henderson KK, Vanvickle GD, Watkins J, Laughlin MH. Arterial endothelial function in a porcine model of early stage atherosclerotic vascular disease. International Journal of Experimental Pathology 2005;86(5) 335-345. [108] Kamimura R, Miura N, Suzuki S. The hemodynamic effects of acute myocardial ischemia and reperfusion in Clawn miniature pigs. Experimental Animals 2003;52(4) 335-338. [109] Liang Y, Zhu H, Friedman MH. The correspondence between coronary arterial wall strain and histology in a porcine model of atherosclerosis. Physics in Medicine and Biology 2009;54(18) 5625-5641. [110] Thim T. Human-like atherosclerosis in minipigs: a new model for detection and treatment of vulnerable plaques. Danish Medical Bulletin 2010;57(7) B4161. [111] Miyoshi N, Horiuchi M, Inokuchi Y, Miyamoto Y, Miura N, Tokunaga S, Fujiki M, Izumi Y, Miyajima H, Nagata R, Misumi K, Takeuchi T, Tanimoto A, et al. Novel microminipig model of atherosclerosis by high fat and high cholesterol diet, established in Japan. In Vivo 2010;24(5) 671-680. [112] Kawaguchi H, Miyoshi N, Miura N, Fujiki M, Horiuchi M, Izumi Y, Miyajima H, Nagata R, Misumi K, Takeuchi T, Tanimoto A, Yoshida H. Microminipig, a non-rodent experimental animal optimized for life science research:novel atherosclerosis model induced by high fat and cholesterol diet. Journal of Pharmacological Sciences 2011;115(2) 115-121. [113] Stoletov K, Fang L, Choi SH, Hartvigsen K, Hansen LF, Hall C, Pattison J, Juliano J, Miller ER, Almazan F, Crosier P, Witztum JL, Klemke RL, et al. Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circulation Research 2009;104(8) 952-960. [114] Fang L, Harkewicz R, Hartvigsen K, Wiesner P, Choi SH, Almazan F, Pattison J, Deer E, Sayaphupha T, Dennis EA, Witztum JL, Tsimikas S, Miller YI. Oxidized cholesteryl esters and phospholipids in zebrafish larvae fed a high cholesterol diet: macrophage binding and activation. Journal of Biological Chemistry 2010;285(42) 32343-32351. [115] Fang L, Green SR, Baek JS, Lee SH, Ellett F, Deer E, Lieschke GJ, Witztum JL, Tsimikas S, Miller YI. In vivo visualization and attenuation of oxidized lipid accumulation in hypercholesterolemic zebrafish. Journal of Clinical Investigation 2011;121(12) 4861-4869. [116] Yanni AE. The laboratory rabbit: an animal model of atherosclerosis research. Laboratory Animals 2004;38(3) 246-256. [117] Daugherty A, Zweifel BS, Schonfeld G. Probucol attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. British Journal of Pharmacology 1989;98(2) 612-618. [118] Del Rio M, Chulia T, Merchan-Perez A, Remezal M, Valor S, Gonzalez J, Gutierrez JA, Contreras JA, Lasuncion MA, Tejerina T. Effects of indapamide on atherosclerosis development in cholesterol-fed rabbits. Journal of Cardiovascular Pharmacology 1995;25(6) 973-978. [119] Huff MW, Carroll KK. Effects of dietary protein on turnover, oxidation, and absorption of cholesterol, and on steroid excretion in rabbits. Journal of Lipid Research 1980;21(5) 546-548. [120] Zauberman H, Livni N. Experimental vascular occlusion in hypercholesterolemic rabbits. Investigative Ophthalmology & Visual Science 1981;21(2) 248-255. [121] Finking G, Hanke H. Nikolaj Nikolajewitsch Anitschkow (1885-1964) established the cholesterol-fed rabbit as a model for atherosclerosis research. Atherosclerosis 1997;135(1) 1-7. [122] Redgrave TG, Dunne KB, Roberts DCK, West CE. Chylomicron metabolism in rabbits fed diets with or without added cholesterol. Atherosclerosis 1976;24(3) 501-508. [123] Chapman MJ. Animal lipoproteins: chemistry, structure, and comparative aspects. Journal of lipid research 1980;21(7) 789-853. [124] Roth RI, Gaubatz JW, Gotto AM,Jr, Patsch JR. Effect of cholesterol feeding on the distribution of plasma lipoproteins and on the metabolism of apolipoprotein E in the rabbit. Journal of Lipid Research 1983;24(1) 1-11. [125] Reddy C, Stock EL, Mendelsohn AD, Nguyen HS, Roth SI, Ghosh S. Pathogenesis of experimental lipid keratopathy: corneal and plasma lipids. Investigative Ophthalmology & Visual Science 1987;28(9) 1492-1496. [126] Holm P, Andersen HL, Arroe G, Stender S. Gender gap in aortic cholesterol accumulation in cholesterol-clamped rabbits: role of the endothelium and mononuclearendothelial cell interaction. Circulation 1998;98(24) 2731-2737. [127] Ponraj D, Makjanic J, Thong PS, Tan BK, Watt F. The onset of atherosclerotic lesion formation in hypercholesterolemic rabbits is delayed by iron depletion. FEBS Letters 1999;459(2) 218-222. [128] Hanyu M, Kume N, Ikeda T, Minami M, Kita T, Komeda M. VCAM-1 expression precedes macrophage infiltration into subendothelium of vein grafts interposed into carotid arteries in hypercholesterolemic rabbits--a potential role in vein graft atherosclerosis. Atherosclerosis 2001;158(2) 313-319. [129] Kálmán J, Kudchodkar BJ, Krishnamoorthy R, Dory L, Lacko AG, Agarwal N. High cholesterol diet down regulates the activity of activator protein-1 but not nuclear factorkappa B in rabbit brain. Life Sciences 2001;68(13) 1495-1503. [130] de la Peña NC, Sosa-Melgarejo JA, Ramos RR, Méndez JD. Inhibition of platelet aggregation by putrescine, spermidine, and spermine in hypercholesterolemic rabbits. Archives of Medical Research 2000;31(6) 546-550. [131] Francois J, Neetens A. Vascular manifestations of experimental hypercholesteraemia in rabbits. Angiologica 1966;3(1) 1-20. [132] Amaratunga A, Abraham CR, Edwards RB, Sandell JH, Schreiber BM, Fine RE. Apolipoprotein E is synthesized in the retina by Muller glial cells, secreted into the vitreous, and rapidly transported into the optic nerve by retinal ganglion cells. Journal of Biological Chemistry 1996;271(10) 5628-5632. [133] Sebesteny A, Sheraidah GA, Trevan DJ, Alexander RA, Ahmed AI. Lipid keratopathy and atheromatosis in an SPF laboratory rabbit colony attributable to diet. Laboratory Animals 1985;19(3) 180-188. [134] Yamamoto T, Bishop RW, Brown MS, Goldstein JL, Russell DW. Deletion in cysteinerich region of LDL receptor impedes transport to cell surface in WHHL rabbit. Science 1986;232(4755) 1230-1237. [135] Shiomi M, Ito T. The Watanabe heritable hyperlipidemic (WHHL) rabbit, its characteristics and history of development: A tribute to the late Dr. Yoshio Watanabe. Atherosclerosis 2009;207(1) 1-7. [136] Watanabe Y. Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHLrabbit). Atherosclerosis 1980;36(2) 261-268. [137] Steen H, Lima JA, Chatterjee S, Kolmakova A, Gao F, Rodriguez ER, Stuber M. Highresolution three-dimensional aortic magnetic resonance angiography and quantitative vessel wall characterization of different atherosclerotic stages in a rabbit model. Investigative Radiology 2007;42(9) 614-621. [138] Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, Kudomi N, Shiomi M, Magata Y, Iida H, Saji H. (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. Journal of Nuclear Medicine 2004;45(7) 1245-1250. [139] Iwata A, Miura S, Imaizumi S, Zhang B, Saku K. Measurement of atherosclerotic plaque volume in hyperlipidemic rabbit aorta by intravascular ultrasound. Journal of Cardiology 2007;50(4) 229-234. [140] Sadowitz B, Maier KG, Gahtan V. Basic science review: Statin therapy--Part I: The pleiotropic effects of statins in cardiovascular disease. Vascular and Endovascular Surgery 2010;44(4) 241-251. [141] Sadowitz B, Seymour K, Costanza MJ, Gahtan V. Statin therapy--Part II: Clinical considerations for cardiovascular disease. Vascular and Endovascular Surgery 2010;44(6) 421-433. [142] van der Most PJ, Dolga AM, Nijholt IM, Luiten PGM, Eisel ULM. Statins: Mechanisms of neuroprotection. Progress in Neurobiology 2009;88(1) 64-75. [143] Zhou Q, Liao JK. Statins and cardiovascular diseases: from cholesterol lowering to pleiotropy. Current Pharmaceutical Design 2009;15(5) 467-478. [144] Zhou Q, Liao JK. Pleiotropic effects of statins. - Basic research and clinical perspectives -. Circulation Journal 2010;74(5) 818-826. [145] Botti RE, Triscari J, Pan HY, Zayat J. Concentrations of pravastatin and lovastatin in cerebrospinal fluid in healthy subjects. Clinical Neuropharmacology 1991;14(3) 256-261. [146] Wang CY, Liu PY, Liao JK. Pleiotropic effects of statin therapy: molecular mechanisms and clinical results. Trends in Molecular Medicine 2008;14(1) 37-44. [147] Athyros VG, Kakafika AI, Tziomalos K, Karagiannis A, Mikhailidis DP. Pleiotropic effects of statins--clinical evidence. Current Pharmaceutical Design 2009;15(5) 479-489. [148] Rikitake Y, Kawashima S, Takeshita S, Yamashita T, Azumi H, Yasuhara M, Nishi H, Inoue N, Yokoyama M. Anti-oxidative properties of fluvastatin, an HMG-CoA reductase inhibitor, contribute to prevention of atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 2001;154(1) 87-96. [149] Porter KE, Naik J, Turner NA, Dickinson T, Thompson MM, London NJ. Simvastatin inhibits human saphenous vein neointima formation via inhibition of smooth muscle cell proliferation and migration. Journal of Vascular Surgery 2002;36(1) 150-157. [150] Mitani H, Egashira K, Kimura M. HMG-CoA reductase inhibitor, fluvastatin, has cholesterol-lowering independent "direct" effects on atherosclerotic vessels in high cholesterol diet-fed rabbits. Pharmacological Research 2003;48(5) 417-427. [151] Hall NF, Gale CR, Syddall H, Phillips DI, Martyn CN. Risk of macular degeneration in users of statins: cross sectional study. British Medical Journal 2001;323(7309) 375-376. [152] McCarty CA, Mukesh BN, Guymer RH, Baird PN, Taylor HR. Cholesterol-lowering medications reduce the risk of age-related maculopathy progression. Medical Journal of Australia 2001;175(6) 340. [153] Yamada K, Sakurai E, Itaya M, Yamasaki S, Ogura Y. Inhibition of Laser-Induced Choroidal Neovascularization by Atorvastatin by Downregulation of Monocyte Chemotactic Protein-1 Synthesis in Mice. Investigative Ophthalmology Visual Science 2007;48(4) 1839-1843. [154] Yamakawa K, Bhutto IA, Lu Z, Watanabe Y, Amemiya T. Retinal vascular changes in rats with inherited hypercholesterolemia--corrosion cast demonstration. Current Eye Research 2001;22(4) 258-265. [155] Ong JM, Zorapapel NC, Rich KA, Wagstaff RE, Lambert RW, Rosenberg SE, Moghaddas F, Pirouzmanesh A, Aoki AM, Kenney MC. Effects of cholesterol and apolipoprotein E on retinal abnormalities in ApoE-deficient mice. Investigative Ophthalmology & Visual Science 2001;42(8) 1891-1900. [156] Kouchi M, Ueda Y, Horie H, Tanaka K. Ocular lesions in Watanabe heritable hyperlipidemic rabbits. Veterinary Ophthalmology 2006;9(3) 145-148. [157] Triviño A, Ramírez AI, Salazar JJ, de Hoz R, Rojas B, Padilla E, Tejerina T, Ramírez JM. A cholesterol-enriched diet induces ultrastructural changes in retinal and macroglial rabbit cells. Experimental Eye Research 2006;83(2) 357-366. [158] Ramírez AI, Salazar JJ, de Hoz R, Rojas B, Ruiz E, Tejerina T, Ramírez JM, Triviño A. Macroglial and retinal changes in hypercholesterolemic rabbits after normalization of cholesterol levels. Experimental Eye Research 2006;83(6) 1423-1438. [159] Shibata M, Sugiyama T, Hoshiga M, Hotchi J, Okuno T, Oku H, Hanafusa T, Ikeda T. Changes in optic nerve head blood flow, visual function, and retinal histology in hypercholesterolemic rabbits. Experimental Eye Research 2011;93(6) 818-824. [160] Triviño A, Rojas B, Ramírez AI, Salazar JJ, de Hoz R, Ramajo M, Redondo S, Navarro-Dorado J, Tejerina T, Ramírez JM. Low-dosage statins reduce choroidal damage in hypercholesterolemic rabbits. Acta Ophthalmologica 2011;89(7) 660-669. [161] Torres RJ, Muccioli C, Maia M, Noronha L, Luchini A, Alessi A, Olandoski M, Farah ME, Precoma DB. Sclerochorioretinal abnormalities in hypercholesterolemic rabbits treated with rosiglitazone. Ophthalmic Surgery, Lasers & Imaging 2010;41(5) 562-571. [162] Topper JN, Gimbrone MA,Jr. Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Molecular Medicine Today 1999;5(1) 40-46. [163] Wu CC, Chang SW, Chen MS, Lee YT. Early change of vascular permeability in hypercholesterolemic rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology 1995;15(4) 529-533. [164] Sánchez-Pérez RM, Molto JM, Medrano V, Beltrán I, Diaz-Marín C. Atherosclerosis and brain circulation. Revista de Neurologia 1999;28(11) 1109-1115. [165] Darblade B, Caillaud D, Poirot M, Fouque M, Thiers J, Rami J, Bayard F, Arnal J. Alteration of plasmalemmal caveolae mimics endothelial dysfunction observed in atheromatous rabbit aorta. Cardiovascular Research 2001;50(3) 566-576. [166] Hardin CD, Vallejo J. Caveolins in vascular smooth muscle: form organizing function. Cardiovascular Research 2006;69(4) 808-815. [167] Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 2001;293(5539) 2449-2452. [168] Bosch M, Mari M, Gross SP, Fernandez-Checa JC, Pol A. Mitochondrial cholesterol: a connection between caveolin, metabolism, and disease. Traffic 2011;12(11) 1483-1489. [169] Lin WW, Lin YC, Chang TY, Tsai SH, Ho HC, Chen YT, Yang VC. Caveolin-1 expression is associated with plaque formation in hypercholesterolemic rabbits. Journal of Histochemistry and Cytochemistry 2006;54(8) 897-904. [170] Xu Y, Buikema H, van Gilst WH, Henning RH. Caveolae and endothelial dysfunction: filling the caves in cardiovascular disease. European Journal of Pharmacology 2008;585(2-3) 256-260. [171] Malinow MR. Experimental models of atherosclerosis regression. Atherosclerosis 1983;48(2) 105-118. [172] Lusis AJ. Atherosclerosis. Nature 2000;407(6801) 233-241. [173] Saso Y, Kitamura K, Yasoshima A, Iwasaki HO, Takashima K, Doi K, Morita T. Rapid induction of atherosclerosis in rabbits. Histology and Histopathology 1992;7(3) 315-320. [174] Rodger FC. A new preparation for the study of experimental atherosclerosis progressive-regressive changes in albino rabbit iris. Experimental Eye Research 1972;14(1) 1-6. [175] Abdulla YH, Adams CW, Morgan RS. Connective-tissue reactions to implantation of purified sterol, sterol esters, phosphoglycerides, glycerides and free fatty acids. Journal of Pathology and Bacteriology 1967;94(1) 63-71. [176] Henney AM, Wakeley PR, Davies MJ, Foster K, Hembry R, Murphy G, Humphries S. Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proceedings of the National Academy of Sciences of the United States of America 1991;88(18) 8154-8158. [177] Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. Journal of Clinical Investigation 1994;94(6) 2493-2503. [178] McGwin G,Jr, Xie A, Owsley C. The use of cholesterol-lowering medications and agerelated macular degeneration. Ophthalmology 2005;112(3) 488-494. [179] Jukema JW, Bruschke AVG, van Boven AJ, Reiber JHC, Bal ET, Zwinderman AH, Jansen H, Boerma GJM, van Rappard FM, Lie KI. Effects of Lipid Lowering by Pravastatin on Progression and Regression of Coronary Artery Disease in Symptomatic Men With Normal to Moderately Elevated Serum Cholesterol Levels : The Regression Growth Evaluation Statin Study (REGRESS). Circulation 1995;91(10) 2528-2540. [180] Corsini A, Pazzucconi F, Pfister P, Paoletti R, Sirtori CR. Inhibitor of proliferation of arterial smooth-muscle cells by fluvastatin. Lancet 1996;348(9041) 1584. [181] Lee TM, Lin MS, Chou TF, Tsai CH, Chang NC. Effect of pravastatin on left ventricular mass by activation of myocardial K ATP channels in hypercholesterolemic rabbits. Atherosclerosis 2004;176(2) 273-278. [182] Kurokawa J, Hayashi K, Toyota Y, Shingu T, Shiomi M, Kajiyama G. High dose of fluvastatin sodium (XU62-320), a new inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, lowers plasma cholesterol levels in homozygous Watanabe-heritable hyperlipidemic rabbits. Biochimica et Biophysica Acta 1995;1259(1) 99-104. [183] Taggart MJ. Smooth muscle excitation-contraction coupling: a role for caveolae and caveolins? News in Physiological Sciences 2001;16 61-65. [184] Poche R, de Mello Mattos CM, Rembarz HW, Stoepel K. The mitochondrial-myofibril ratio in rat myocardial cells in hypertensive cardiac hypertrophy. Virchows Archives A: Pathology.1968;344(1) 100-110. [185] Simon DK, Johns DR. Mitochondrial disorders: clinical and genetic features. Annual Review of Medicine 1999;50 111-127.